Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield

2019 ◽  
Vol 133 ◽  
pp. 1046-1054 ◽  
Author(s):  
A.A. Noonari ◽  
R.B. Mahar ◽  
A.R. Sahito ◽  
K.M. Brohi
2018 ◽  
Vol 36 (2) ◽  
pp. 169-182 ◽  
Author(s):  
Korai M Safar ◽  
Mahar R Bux ◽  
Uqaili M Aslam ◽  
Bhattacharjee A Shankar ◽  
Ramesh K Goel

This study analyzes the feasibility of putrescible components of municipal solid waste (PCMSW) such as food waste (FW) and yard waste (YW) for methane production in Pakistan. The batch experiments have been conducted at two different inoculums to substrate ratios (ISRs) by using various inoculums under mesophilic condition. The highest methane yield of FW and YW is achieved to be 428 Nml g-1 volatile solids (VS) added and 304 Nml g-1 VS added respectively by using buffalo dung inoculum at ISR-5. While, lowest methane yield of FW and YW is obtained as 236 Nml g-1 VS added and 151Nml g-1 VS added respectively by using effluent from a continuous stirrer tank reactor as inoculum at ISR-3. The first order decay model has been introduced, which gives best fit for methane potential of PCMSW with buffalo dung inoculum. Additionally, the feasibility of PCMSW in terms of power generation potential has been analyzed. About 60.63 million m3/year energy can be generated by converting PCMSW into methane gas leading to power generation. The finding of this study concludes that the replacement of imported energy and reduction up to 1.62% in other primary energy sources would be achieved, if PCMSW are properly converted into energy through anaerobic digestion in Pakistan.


Author(s):  
Altab Alam Noonari ◽  
◽  
Rasool Bux Mahar ◽  
Abdul Razaque Sahito ◽  
Khan Muhammad Brohi ◽  
...  

2017 ◽  
Vol 23 (1) ◽  
Author(s):  
N.NANDHA KUMAR ◽  
K. SOURIANATHA SUNDARAM ◽  
D. SUDHAKAR ◽  
K.K. KUMAR

Excessive presence of polysaccharides, polyphenol and secondary metabolites in banana plant affects the quality of DNA and it leads to difficult in isolating good quality of DNA. An optimized modified CTAB protocol for the isolation of high quality and quantity of DNA obtained from banana leaf tissues has been developed. In this protocol a slight increased salt (NaCl) concentration (2.0M) was used in the extraction buffer. Polyvinylpyrrolidone (PVP) and Octanol were used for the removal of polyphenols and polymerase chain reaction (PCR) inhibitors. Proteins like various enzymes were degraded by Proteinase K and removed by centrifugation from plant extract during the isolation process resulting in pure genomic DNA, ready to use in downstream applications including PCR, quantitative polymerase chain reaction (qPCR), ligation, restriction and sequencing. This protocol yielded a high molecular weight DNA isolated from polyphenols rich leaves of Musa spp which was free from contamination and colour. The average yields of total DNA from leaf ranged from 917.4 to 1860.9 ng/ìL. This modified CTAB protocol reported here is less time consuming 4-5h, reproducible and can be used for a broad spectrum of plant species which have polyphenol and polysaccharide compounds.


2018 ◽  
Vol 77 (3) ◽  
pp. 257-262
Author(s):  
А. S. Vakula ◽  
А. G. Belous ◽  
Т. V. Kalmykova ◽  
S. I. Petrushenko ◽  
V. N. Sukhov ◽  
...  

Author(s):  
Shanmuganathan S. ◽  
Nigma S. ◽  
Anbarasan B. ◽  
Harika B.

Nanoparticulate Carriers which is biodegradable, biocompatible and bio adhesive have significant feasible applications for administration of therapeutic molecules. The present study was aimed to formulate and optimise Capecitabine loaded Chitosan-Fe3O4 Nanoparticles and to study the in-vitro evaluation by sigma dialysis method. Capecitabine loaded chitosan – Fe3O4 nanoparticles batches with different ratios of drug: polymer (1:1, 1:2, 1:3, 1:4, 1:5, 1:6) were prepared by ionic gelation method. Increase in polymer concentration increases the nanoparticle drug content. Entrapment efficiency was 60.12% with drug to polymer ratio F3 (1:3). In-vitro release was found to be 65.20% for 12 hrs. Capecitabine from chitosanFe3O4 nanoparticles SEM image reveals discrete spherical structure and particles with size range of 100-500nm. FTIR studies represent the functional groups present with no characteristics change in formulations. Samples stored at refrigerator conditions showed better stability compared with samples kept at other conditions during 8 weeks of storage.


Author(s):  
A.M. Magerramov ◽  
◽  
N.I. Kurbanova ◽  
M.N. Bayramov ◽  
N.A. Alimirzoyeva ◽  
...  

Using radiothermoluminescence (RTL), the molecular mobility features in the temperature range of 77-300 K were studied for the polypropylene (PP)/ethylene propylene diene elastomer SKEPT-4044 with NiO, Cu2O and Fe3O4 nanoparticles (NPs) based on ABS-acrylonitrile butadiene or SCS-divinyl styrene matrices. It has been shown that the introduction of nanofillers in PP significantly affects the nature and temperature of γ- and β-relaxation processes, while the region of manifestation of the β-process noticeably shifts to the region of low temperatures. Composites with Cu2O NPs have a higher β-transition temperature Tβ than composites with other NPs. It was found that PP/SKEPT-4044 composites with Cu2O NPs with a dispersion of 11-15 nm and acrylonitrile butadiene thermoplastics have optimal frost resistance compared to other compositions.


2019 ◽  
Vol 22 (2) ◽  
pp. 123-128
Author(s):  
Setareh Habibzadeh ◽  
Hassan Ghasemnejad-Bosra ◽  
Mina Haghdadi ◽  
Soheila Heydari-Parastar

Background: In this study, we developed a convenient methodology for the synthesis of coumarin linked to pyrazolines and pyrano [2,3-h] coumarins linked to 3-(1,5-diphenyl-4,5- dihydro-1H-pyrazol-3-yl)-chromen-2-one derivatives using Chlorosulfonic acid supported Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles (Fe3O4-PPCA) catalyst. Materials and Methods:: Fe3O4-PPCA was investigated as an efficient and magnetically recoverable Nanocatalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with a variety of aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be easily recovered by applying an external magnet device and reused for at least 10 reaction runs without considerable loss of reactivity. Results and Conclusion: The advantages of this protocol are the use of commercially available materials, simple and an inexpensive procedure, easy separation, and an eco-friendly procedure, and it shows good reaction times, good to high yields, inexpensive and practicability procedure, and high efficiency.


Sign in / Sign up

Export Citation Format

Share Document