scholarly journals Study of the internal flow structure of an ultra-small axial flow hydraulic turbine

2019 ◽  
Vol 139 ◽  
pp. 1000-1011 ◽  
Author(s):  
Yasuyuki Nishi ◽  
Tomoyuki Kobori ◽  
Nozomi Mori ◽  
Terumi Inagaki ◽  
Norio Kikuchi
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yasuyuki Nishi ◽  
Yutaka Kobayashi ◽  
Terumi Inagaki ◽  
Norio Kikuchi

We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement). As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.


2018 ◽  
Vol 2018.24 (0) ◽  
pp. OS0505
Author(s):  
Tomoyuki KOBORI ◽  
Yasuyuki NISHI ◽  
Nozomi MORI ◽  
Terumi INAGAKI ◽  
Norio KIKUCHI

2021 ◽  
Vol 11 (13) ◽  
pp. 6111
Author(s):  
He Li ◽  
Xiaodong Wang ◽  
Jiuxin Ning ◽  
Pengfei Zhang ◽  
Hailong Huang

This paper investigated the effect of air leaking into the working fluid on the performance of a steam ejector. A simulation of the mixing of air into the primary and secondary fluids was performed using CFD. The effects of air with a 0, 0.1, 0.3 and 0.5 mass fraction on the entrainment ratio and internal flow structure of the steam ejector were studied, and the coefficient distortion rates for the entrainment ratios under these air mass fractions were calculated. The results demonstrated that the air modified the physical parameters of the working fluid, which is the main reason for changes in the entrainment ratio and internal flow structure. The calculation of the coefficient distortion rate of the entrainment ratio illustrated that the air in the primary fluid has a more significant impact on the change in the entrainment ratio than that in the secondary fluid under the same air mass fraction. Therefore, the air mass fraction in the working fluid must be minimized to acquire a precise entrainment ratio. Furthermore, this paper provided a method of inspecting air leakage in the experimental steam ejector refrigeration system.


Author(s):  
Özhan H. Turgut ◽  
Cengiz Camcı

Three different ways are employed in the present paper to reduce the secondary flow related total pressure loss. These are nonaxisymmetric endwall contouring, leading edge (LE) fillet, and the combination of these two approaches. Experimental investigation and computational simulations are applied for the performance assessments. The experiments are carried out in the Axial Flow Turbine Research Facility (AFTRF) having a diameter of 91.66cm. The NGV exit flow structure was examined under the influence of a 29 bladed high pressure turbine rotor assembly operating at 1300 rpm. For the experimental measurement comparison, a reference Flat Insert endwall is installed in the nozzle guide vane (NGV) passage. It has a constant thickness with a cylindrical surface and is manufactured by a stereolithography (SLA) method. Four different LE fillets are designed, and they are attached to both cylindrical Flat Insert and the contoured endwall. Total pressure measurements are taken at rotor inlet plane with Kiel probe. The probe traversing is completed with one vane pitch and from 8% to 38% span. For one of the designs, area averaged loss is reduced by 15.06%. The simulation estimated this reduction as 7.11%. Computational evaluation is performed with the rotating domain and the rim seal flow between the NGV and the rotor blades. The most effective design reduced the mass averaged loss by 1.28% over the whole passage at the NGV exit.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Nobuyuki Yamaguchi ◽  
Masayuki Ogata ◽  
Yohei Kato

An improved construction of air-separator device, which has radial-vanes embedded within its inlet circumferential opening with their leading-edges facing the moving tips of the fan rotor-blades so as to scoop the tip flow, was investigated with respect to the stall-prevention effect on a low-speed, single-stage, lightly loaded, axial-flow fan. Stall-prevention effects by the separator layout, relative location of the separator to the rotor-blades, and widths of the openings of the air-separator inlet and exit were parametrically surveyed. As far as the particular fan is concerned, the device together with the best relative location has proved to be able to eliminate effectively the stall zone having existed in the original solid-wall characteristics, which has confirmed the promising potential of the device. Guidelines were obtained from the data for optimizing relative locations of the device to the rotor-blades, maximizing the stall-prevention effect of the device, and minimizing the axial size of the device for a required stall-prevention effect, at least for the particular fan and possibly for fans of similar light-load fans. The data suggest the changing internal flow conditions affected by the device conditions.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881174
Author(s):  
Weijie Zhang ◽  
Jianping Yuan ◽  
Banglun Zhou ◽  
Hao Li ◽  
Ye Yuan

Axial-flow fan with advantages such as large air volume, high head pressure, and low noise is commonly used in the work of air-conditioner outdoor unit. In order to investigate the internal flow mechanism of the axial-flow fan with different trailing edge structures of impellers, four kinds of impellers were designed, and numerical simulation and experiment were deployed in this article. The pressure distribution on the blades surface and distribution of vorticity in impellers were obtained using numerical simulation. Distribution of blade loading and velocity at the circumference are discussed. The relationship between the wideband noise and the trailing edge was established based on the experiment results. The results show that after the optimization of the trailing edge structure, the distribution of vorticity near the trailing edge of the blade is more uniform, especially at the trailing edge of 80% of the chord length of the suction surface. From the blade height position of 70% to the impeller tip, the pressure on the surface rapidly increases due to the tip vortex and the vortex shedding on the blade edge occurred in the top region of impeller. The pressure fluctuation amplitude at the trailing edge structure of the tail-edge optimization structure is smaller. In the distribution of blade loading, the three tail-edge optimization structures have smaller pressure fluctuations and pressure differences at the trailing edge structure. It is extremely important to control the fluctuation amplitude at the trailing edge. The amplitude of low-frequency sound pressure level of optimizing the trailing edge structure decreases obviously in the range of 50–125 Hz, and the optimization structure of trailing edge has an obvious effect on low-frequency wideband noise.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yasuyuki Nishi ◽  
Terumi Inagaki ◽  
Kaoru Okubo ◽  
Norio Kikuchi

We propose a new type of portable hydraulic turbine that uses the kinetic energy of flow in open channels. The turbine comprises a runner with an appended collection device that includes a diffuser section in an attempt to improve the output by catching and accelerating the flow. With such turbines, the performance of the collection device, and a composite body comprising the runner and collection device were studied using numerical analysis. Among four stand-alone collection devices, the inlet velocity ratio was most improved by the collection device featuring an inlet nozzle and brim. The inlet velocity ratio of the composite body was significantly lower than that of the stand-alone collection device, owing to the resistance of the runner itself, the decreased diffuser pressure recovery coefficient, and the increased backpressure coefficient. However, at the maximum output tip speed ratio, the inlet velocity ratio and the loading coefficient were approximately 31% and 22% higher, respectively, for the composite body than for the isolated runner. In particular, the input power coefficient significantly increased (by approximately 2.76 times) owing to the increase in the inlet velocity ratio. Verification tests were also conducted in a real canal to establish the actual effectiveness of the turbine.


2021 ◽  
Author(s):  
Daniil Suslov ◽  
Ivan Litvinov ◽  
Evgeny Gorelikov ◽  
Sergey Shtork ◽  
D. H. Wood

Author(s):  
Xiaojun Jiang ◽  
Yi Li ◽  
Zhaohui He ◽  
Cui Baoling ◽  
Wenlong Dong

The three-dimensional flow field characteristics are obtained by performing numerical simulation of flow in a lobe pump with twisted rotors. The relationship between the dynamic flow structure and the flow fluctuation is explored. Actually, the viscous incompressible Navier-Stokes equations are solved within an unsteady flow model. The dynamic mesh technique is applied to obtain the dynamic flow structure. By comparing the simulated results of straight rotor with those of twisted rotor, the effect of rotor shape on the flow fluctuation was revealed. Finally, the impact of the lobes number of rotors on flow pulsations is discussed. The results show that there is an intrinsic relationship between the flow fluctuation and the vortex in the lobe pump. The use of twisted rotors can effectively improve the internal flow characteristics of lobe pump and reduce flow fluctuation. With the increase of the number of lobes, the lobe pump output is more stable and capacity has been improved.


Sign in / Sign up

Export Citation Format

Share Document