A two-dimensional Jensen model with a Gaussian-shaped velocity deficit

2019 ◽  
Vol 141 ◽  
pp. 46-56 ◽  
Author(s):  
Mingwei Ge ◽  
Ying Wu ◽  
Yongqian Liu ◽  
Xiang I.A. Yang
1974 ◽  
Vol 64 (3) ◽  
pp. 529-564 ◽  
Author(s):  
J. Counihan ◽  
J. C. R. Hunt ◽  
P. S. Jackson

By making simple assumptions, an analytical theory is deduced for the mean velocity behind a two-dimensional obstacle (of heighth) placed on a rigid plane over which flows a turbulent boundary layer (of thickness δ). It is assumed thath[Gt ] δ, and that the wake can be divided into three regions. The velocity deficit −uis greatest in the two regions in which the change in shear stress is important, a wall region (W) close to the wall and a mixing region (M) spreading from the top of the obstacle. Above these is the external region (E) in which the velocity field is an inviscid perturbation on the incident boundary-layer velocity, which is taken to have a power-law profileU(y) =U∞(y−y1)n/δn, wheren[Gt ] 1. In (M), assuming that an eddy viscosity (=KhU(h)) can be defined for the perturbed flow in terms of the incident boundary-layer flow and that the velocity is self-preserving, it is found thatu(x,y) has the form$\frac{u}{U(h)} = \frac{ C }{Kh^2U^2(h)} \frac{f(n)}{x/h},\;\;\;\; {\rm where}\;\;\;\; \eta = (y/h)/[Kx/h]^{1/(n+2)}$, and the constant which defines the strength of the wake is$C = \int^\infty_0 y^U(y)(u-u_E)dy$, whereu=uE(x, y) asy→ 0 in region (E).In region (W),u(y) is proportional to Iny.By considering a large control surface enclosing the obstacle it is shown that the constant of the wake flow is not simply related to the drag of the obstacle, but is equal to the sum of the couple on the obstacle and an integral of the pressure field on the surface near the body.New wind-tunnel measurements of mean and turbulent velocities and Reynolds stresses in the wake behind a two-dimensional rectangular block on a roughened surface are presented. The turbulent boundary layer is artificially developed by well-established methods (Counihan 1969) in such a way that δ = 8h. These measurements are compared with the theory, with other wind-tunnel measurements and also with full-scale measurements of the wind behind windbreaks.It is found that the theory describes the distribution of mean velocity reasonably well, in particular the (x/h)−1decay law is well confirmed. The theory gives the correct self-preserving form for the distribution of Reynolds stress and the maximum increase of the mean-square turbulent velocity is found to decay downstream approximately as$ (\frac{x}{h})^{- \frac{3}{2}} $in accordance with the theory. The theory also suggests that the velocity deficit is affected by the roughness of the terrain (as measured by the roughness lengthy0) in proportion to In (h/y0), and there seems to be some experimental support for this hypothesis.


1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
H.A. Cohen ◽  
W. Chiu ◽  
J. Hosoda

GP 32 (molecular weight 35000) is a T4 bacteriophage protein that destabilizes the DNA helix. The fragment GP32*I (77% of the total weight), which destabilizes helices better than does the parent molecule, crystallizes as platelets thin enough for electron diffraction and electron imaging. In this paper we discuss the structure of this protein as revealed in images reconstructed from stained and unstained crystals.Crystals were prepared as previously described. Crystals for electron microscopy were pelleted from the buffer suspension, washed in distilled water, and resuspended in 1% glucose. Two lambda droplets were placed on grids over freshly evaporated carbon, allowed to sit for five minutes, and then were drained. Stained crystals were prepared the same way, except that prior to draining the droplet, two lambda of aqueous 1% uranyl acetate solution were applied for 20 seconds. Micrographs were produced using less than 2 e/Å2 for unstained crystals or less than 8 e/Å2 for stained crystals.


Sign in / Sign up

Export Citation Format

Share Document