Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China

2020 ◽  
Vol 145 ◽  
pp. 478-489 ◽  
Author(s):  
Rui Chang ◽  
Yong Luo ◽  
Rong Zhu
2017 ◽  
Vol 20 (2) ◽  
pp. 187-190 ◽  
Author(s):  
Bradley Plunkett ◽  
Andrew Duff ◽  
Ross Kingwell ◽  
David Feldman

The average size of Australian farms in scale and revenue are the globe’s largest. This scale is a result, in part, of low average rural population densities; development patterns in broadacre production; low levels of effective public policy transfers; a stable and suitable institutional setting suitable for corporate and other large scale investment; and low yields. It is also a factor of the natural variability of the country’s climatic systems which have contributed to the scale of extensive northern cattle production; this variability has implications for the pattern of ownership of broadacre and extensive production. Corporate ownership, tends to concentrate production aggregations at sufficient scale to offset its additional overheads in areas of relative climatic stability and to replicate these agroholding aggregations spatially to protect the stability of revenue flows. Family structures are more dominant in areas of greater climatic variability. Of interest is the impact that any increasing climatic variability (versus rapid changes in technology) may have upon this pattern.


2021 ◽  
Vol 2 (3) ◽  
pp. 675-694
Author(s):  
Jacob W. Maddison ◽  
Marta Abalos ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Jose M. Garrido-Perez ◽  
...  

Abstract. The build-up of pollutants to harmful levels can occur when meteorological conditions favour their production or accumulation near the surface. Such conditions can arise when a region experiences air stagnation. The link between European air stagnation, air pollution and the synoptic- to large-scale circulation is investigated in this article across all seasons and the 1979–2018 period. Dynamical indices identifying atmospheric blocking, Rossby wave breaking, subtropical ridges, and the North Atlantic eddy-driven and subtropical jets are used to describe the synoptic- to large-scale circulation as predictors in statistical models of air stagnation and pollutant variability. It is found that the large-scale circulation can explain approximately 60 % of the variance in monthly air stagnation, ozone and wintertime particulate matter (PM) in five distinct regions within Europe. The variance explained by the model does not vary strongly across regions and seasons, apart from for PM when the skill is highest in winter. However, the dynamical indices most related to air stagnation do depend on region and season. The blocking and Rossby wave breaking predictors tend to be the most important for describing air stagnation and pollutant variability in northern regions, whereas ridges and the subtropical jet are more important to the south. The demonstrated correspondence between air stagnation, pollution and the large-scale circulation can be used to assess the representation of stagnation in climate models, which is key for understanding how air stagnation and its associated climatic impacts may change in the future.


2018 ◽  
Vol 118 ◽  
pp. 131-137 ◽  
Author(s):  
Rui Chang ◽  
Yanbo Shen ◽  
Yong Luo ◽  
Bo Wang ◽  
Zhenbin Yang ◽  
...  

2021 ◽  
Vol 118 (7) ◽  
pp. e2023787118
Author(s):  
Eduardo Eiji Maeda ◽  
Temesgen Alemayehu Abera ◽  
Mika Siljander ◽  
Luiz E. O. C. Aragão ◽  
Yhasmin Mendes de Moura ◽  
...  

In the Amazon rainforest, land use following deforestation is diverse and dynamic. Mounting evidence indicates that the climatic impacts of forest loss can also vary considerably, depending on specific features of the affected areas. The size of the deforested patches, for instance, was shown to modulate the characteristics of local climatic impacts. Nonetheless, the influence of different types of land use and management strategies on the magnitude of local climatic changes remains uncertain. Here, we evaluated the impacts of large-scale commodity farming and rural settlements on surface temperature, rainfall patterns, and energy fluxes. Our results reveal that changes in land–atmosphere coupling are induced not only by deforestation size but also, by land use type and management patterns inside the deforested areas. We provide evidence that, in comparison with rural settlements, deforestation caused by large-scale commodity agriculture is more likely to reduce convective rainfall and increase land surface temperature. We demonstrate that these differences are mainly caused by a more intensive management of the land, resulting in significantly lower vegetation cover throughout the year, which reduces latent heat flux. Our findings indicate an urgent need for alternative agricultural practices, as well as forest restoration, for maintaining ecosystem processes and mitigating change in the local climates across the Amazon basin.


Author(s):  
Reiner Schlitzer

A global, coarse-resolution ocean model previously fitted to geostrophic shear estimates and to data of 10 hydrographic parameters and tracers has been used to simulate the 3 He and 4 He distributions resulting from the release of mantle helium from mid-ocean ridges. The model is in very good agreement with 14 C and chlorofluorocarbon data and has realistic global ocean overturning strength as well as water mass formation and transport rates. It is found that previously published global mantle 3 He fluxes are too high by a factor of about 2. In the model, optimal agreement of modelled δ 3 He with data is achieved for a global flux of 450 ± 50 mol 3 He yr −1 . The formulation of He source strengths proportional to ridge spreading rates appears compatible with data. A model/data misfit analysis shows significant and large-scale δ 3 He underestimation in the southwestern Pacific centred over the Lau Backarc Basin (approx. 179° W/20° S). These misfits disappear in a set-up with 30 of the 450 mol yr −1 global total 3 He flux released in the Lau Basin over a depth range between 1250 and 2500 m. Such He flux contributions are missing in present mantle He source compilations. Hydrothermal fluxes of other trace elements and isotopes (TEI) can be calculated from He fluxes on the basis of TEI : He ratios measured close to the sources. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’.


2019 ◽  
Vol 10 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Jian-Bin Huang ◽  
Peng-Kang Lou ◽  
Hong-Wei Sun ◽  
Yong Luo ◽  
Zong-Ci Zhao

Author(s):  
C. Mark Moore

The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical–chemical–biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’.


Sign in / Sign up

Export Citation Format

Share Document