Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China

2018 ◽  
Vol 118 ◽  
pp. 131-137 ◽  
Author(s):  
Rui Chang ◽  
Yanbo Shen ◽  
Yong Luo ◽  
Bo Wang ◽  
Zhenbin Yang ◽  
...  
2016 ◽  
Author(s):  
Katsumasa Tanaka ◽  
Atsumu Ohmura ◽  
Doris Folini ◽  
Martin Wild ◽  
Nozomu Ohkawara

Abstract. Observations worldwide indicate secular trends of all-sky surface solar radiation on decadal time scale, termed global dimming and brightening. Accordingly, the observed surface radiation in Japan generally shows a strong decline till the end of the 1980s and then a recovery toward around 2000. Because a substantial number of measurement stations are located within or proximate to populated areas, one may speculate that the observed trends are strongly influenced by local air pollution and are thus not of large-scale significance. This hypothesis poses a serious question as to what regional extent the global dimming and brightening are significant: Are the global dimming and brightening truly global phenomena, or regional or even only local? Our study focused on 14 meteorological observatories that measured all-sky surface solar radiation, zenith transmittance, and maximum transmittance. On the basis of municipality population time series, historical land use maps, recent satellite images, and actual site visits, we concluded that eight stations had been significantly influenced by urbanization, with the remaining six stations being left pristine. Between the urban and rural areas, no marked differences were identified in the temporal trends of the aforementioned meteorological parameters. Our finding suggests that global dimming and brightening in Japan occurred on a large scale, independently of urbanization.


2016 ◽  
Vol 29 (6) ◽  
pp. 2015-2021 ◽  
Author(s):  
Melissa Free ◽  
Bomin Sun ◽  
Hye Lim Yoo

Abstract A homogeneity-adjusted dataset of total cloud cover from weather stations in the contiguous United States is compared with cloud cover in four state-of-the-art global reanalysis products: the Climate Forecast System Reanalysis from NCEP, the Modern-Era Retrospective Analysis for Research and Applications from NASA, ERA-Interim from ECMWF, and the Japanese 55-year Reanalysis Project from the Japan Meteorological Agency. The reanalysis products examined in this study generally show much lower cloud amount than visual weather station data, and this underestimation appears to be generally consistent with their overestimation of downward surface shortwave fluxes when compared with surface radiation data from the Surface Radiation Network. Nevertheless, the reanalysis products largely succeed in simulating the main aspects of interannual variability of cloudiness for large-scale means, as measured by correlations of 0.81–0.90 for U.S. mean time series. Trends in the reanalysis datasets for the U.S. mean for 1979–2009, ranging from −0.38% to −1.8% decade−1, are in the same direction as the trend in surface data (−0.50% decade−1), but further effort is needed to understand the discrepancies in their magnitudes.


2005 ◽  
Vol 44 (7) ◽  
pp. 1045-1065 ◽  
Author(s):  
Sally A. McFarlane ◽  
Charles N. Long ◽  
Donna M. Flynn

Abstract An Atmospheric Radiation and Cloud Station (ARCS) was established on the island of Nauru by the Atmospheric Radiation Measurement (ARM) Program. Analysis of the Nauru99 field experiment data indicated that measurements at the ARCS were affected by a cloud plume that was induced by diurnal heating of the island. During the Nauru Island Effects Study, instrumentation was installed at a second site to develop criteria for identifying when the cloud plume occurs and to quantify its effect on ARCS measurements. The plume directional heading and frequency of occurrence are affected by the large-scale tropical circulation. During the present study, in which an El Niño was developing, Nauru was in a region of active convection, and easterly trade winds were not dominant; plumes were observed in 25% of satellite images, and only one-half of the observed plumes were downwind of the ARCS site. Surface wind direction, surface air temperature, and downwelling solar radiation at the two sites were used to identify periods when the cloud plume affected surface measurements. Differences in low-cloud frequency and surface radiation between plume-affected and non-plume-affected periods were examined. Existence of the cloud plume increased the average low-cloud frequency of occurrence from 20% to 35%, decreased the average downwelling shortwave radiation by 50–60 W m−2, and increased the average downwelling longwave radiation by 5–10 W m−2. Installing a suite of surface meteorological instruments and a global shortwave radiometer at a second site will allow for the long-term quantification of the cloud plume effect on the radiation field at the ARCS site.


2020 ◽  
Author(s):  
Frank Kreuwel ◽  
Chiel van Heerwaarden

<p>Variability of solar irradiance is an important factor concerning large-scale integration of solar photovoltaics (PV) systems onto the electricity grid. Calculations of irradiance are computationally expensive, leaving operational meso-scale forecasting models struggling to achieve accurate results. Moreover, such models deliver outputs at a temporal resolution in the order of hours, whereas from a grid-integration point of view, minute-to-minute variability is a major concern. In previous work, we found that absolute power peaks in the order of seconds are up to 18% higher compared to 15-minute resolution for irradiance and even upwards of 22% higher for household PV systems. Moreover, these maximum peaks in output power are solely observed under mixed-cloud conditions, for which alse the greatest variability is found. In this work we present a machine-learning model which can forecast sub-resolution variability of irradiance, based on standard meso-scale outputs of the HARMONIE model of the The Royal Netherlands Meteorological Institute (KNMI). For training and validation, irradiance measurements obtained at a 1-second interval are used of the Baseline Surface Radiation Network (BSRN) site of Cabauw. A tree-based model was employed, for which the optimum members were constructed using extreme gradient boosting. In this work, we explore the dominant features of the model and link the machine-learned-relations to meteorological processes and dynamics. This research was executed in collaboration with the Distribution Grid Operator Alliander.</p>


2012 ◽  
Vol 9 (2) ◽  
pp. 1123-1185 ◽  
Author(s):  
J.-M. Lellouche ◽  
O. Le Galloudec ◽  
M. Drévillon ◽  
C. Régnier ◽  
E. Greiner ◽  
...  

Abstract. Since December 2010, the global analysis and forecast of the MyOcean system consists in the Mercator Océan NEMO global 1/4° configuration with a 1/12° "zoom" over the Atlantic and Mediterranean Sea. The zoom open boundaries come from the global 1/4° at 20° S and 80° N. The data assimilation uses a reduced order Kalman filter with a 3-D multivariate modal decomposition of the forecast error. It includes an adaptative error and a localization algorithm. A 3D-Var scheme corrects for the slowly evolving large-scale biases in temperature and salinity. Altimeter data, satellite temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for the numerical ocean forecasting. This paper gives a description of the recent systems. The validation procedure is introduced and applied to the current and future systems. This paper shows how the validation impacts on the quality of the systems. It is shown how quality check (in situ, drifters) and data source (satellite temperature) impacts as much as the systems design (model physics and assimilation parameters). The validation demonstrates the accuracy of the MyOcean global products. Their quality is stable in time. The future systems under development still suffer from a drift. This could only be detected with a 5 yr hindcast of the systems. This emphasizes the need for continuous research efforts in the process of building future versions of MyOcean2 forecasting capacities.


2021 ◽  
Author(s):  
Varun Sharma ◽  
Franziska Gerber ◽  
Michael Lehning

<p>When a well-developed, high velocity katabatic flow draining down the ice sheet of Antarctica reaches the coast, it experiences an abrupt and rapid transition due to change in slope resulting in formation of a hydraulic jump. A remarkable manifestation of the hydraulic jump, given the ‘right’ surface conditions, is the large-scale entrainment and convergence of blowing snow particles within the hydraulic jump. This can result in formation of 100-1000 m high, highly localized ‘walls’ of snow in the air in an otherwise cloud-free sky.</p><p>Recent work by Vignon et al. (2020) has described in detail, the mechanisms resulting in the formation of hydraulic jumps and excitation of gravity waves during a particularly notable event at the Dumont d’Urville (DDU) station in August 2017. They used a combination of satellite images, mesoscale simulations with WRF and station measurements (including Micro Rain Radars) in their study, notably relying on the snow wall for diagnosing and quantifying the hydraulic jump in satellite images. On the other hand, relatively less importance was given towards the surface snow processes including the transport of snow particles in the wall.</p><p>In this presentation, we present results from simulations done using the recently developed CRYOWRF v1.0 to recreate the August 2017 episode at DDU and explicitly simulate the formation and the dynamics of the snow wall itself. CRYOWRF enhances the standard WRF model with the state-of-the-art surface snow modelling scheme SNOWPACK as well as a completely new blowing snow scheme. SNOWPACK essentially acts as a land surface model for the WRF atmospheric model, thus making a quantum leap over the existing snow cover models in WRF. Since SNOWPACK is a grain-scale snow model, it allows for the proper formulation of boundary conditions for simulating blowing snow dynamics.</p><p>Results show the formation of the snow wall due to large scale entrainment over a wide area of the ice sheet, the mass balance of the snow wall within the hydraulic jump and finally, the destruction of the snow wall and the ultimate fate of all the entrained snow. We also show results for the influence of the snow wall on the local surface radiation at DDU. Overall, we test the capabilities of CRYOWRF to simulate such a complex phenomenon and highlight possible applications now feasible due the tight coupling of an advanced snow cover model and a multi-scale, non-hydrostatic atmospheric flow solver.</p><p>Reference:</p><p>Vignon, Étienne, Ghislain Picard, Claudio Durán-Alarcón, Simon P. Alexander, Hubert Gallée, and Alexis Berne. " Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica". <em>Journal of the Atmospheric Sciences</em> 77.4 (2020): 1295-1312. <>.</p>


2013 ◽  
Vol 13 (11) ◽  
pp. 30453-30520 ◽  
Author(s):  
J. P. Mulcahy ◽  
D. N. Walters ◽  
N. Bellouin ◽  
S. F. Milton

Abstract. Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propogate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high latitude clean air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a~more realistic treatment of aerosol-cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.


2021 ◽  
Vol 4 ◽  
pp. 163-176
Author(s):  
V.M. Khan ◽  
◽  

Based on assessments of the meteorological services of the CIS countries, the skill scores of the consensus forecast for the territory of Northern Eurasia for the summer of 2021 are presented. The results of monitoring circulation patterns in the stratosphere and troposphere over the past summer season are discussed. Climate monitoring and seasonal forecasting results for the current situation are presented. A probabilistic consensus forecast for air temperature and precipitation is presented for the upcoming winter season 2021/2022 in Northern Eurasia. Possible consequences of the impact of the expected anomalies of meteorological parameters on the economy sectors and social life are discussed. Keywords: North Eurasian Climate Forum, North Eurasian Climate Center, consensus forecast, air temperature, precipitation, large-scale atmospheric circulation, hydrodynamic models, sea surface temperature, impacts


2018 ◽  
Vol 5 (10) ◽  
pp. 805-821
Author(s):  
Amaury de Souza

In this article, the future in photovoltaic energy productivity (PVE) is evaluated using climate variables simulated aerosol clearness index and solar irradiance, it is a model for the performance of photovoltaic systems. The analysis indicates that the aerosol emission reductions in the near future result in an increase in global warming with a significant response of the solar surface radiation and associated PVE productivity. Changes in radiation surface and productivity of solar PVE are related to overall reduction in aerosol effects on the circulation and large scale associated with cloud coverage pattern, rather than local atmospheric effects on optical properties. PVE evaluation is then discussed in the context of the current situation and the PV market highlighting the effects on productivity induced by industrial and public policies, while technological development are comparable to the effects related to the weather. The results presented encourage the improvement and further use of climate models in the assessment of future availability for renewable energy.


Sign in / Sign up

Export Citation Format

Share Document