Preparation, characterization and application of novel surface-modified ZrSnO4 as Sn-based TMOs catalysts for the stearic acid esterification with methanol to biodiesel

2021 ◽  
Vol 173 ◽  
pp. 151-163
Author(s):  
Shaimaa M. Ibrahim
2005 ◽  
Vol 21 (2) ◽  
pp. 101-115
Author(s):  
Chaoying Wan ◽  
Yong Zhang ◽  
Yin Zhu ◽  
Yinxi Zhang

Four kinds of nano-sized calcium carbonate (CaCO3) surface-modified with stearic acid, aluminate, titanate and aluminate-titanate complex coupling agents, were used to reinforce natural rubber (NR)/styrene-butadiene rubber (SBR) blends. The effects of surface modification and CaCO3 content on the cure characteristics, swelling behaviour, and mechanical properties of NR/SBR blends were studied. The surface modification of CaCO3 improved the processing and mechanical properties, and the stearic acid coated CaCO3 (SA-CaCO3) had finer dispersion and produced a better reinforcement effect than the other modified CaCO3. Furthermore, a commercial high abrasion furnace carbon black (HAF) was used for comparison. The results showed that both CaCO3 and HAF increased the cure rate, reduced the optimum cure time and improved the mechanical properties of NR/SBR blends at appropriate filler contents. The tensile strength of filled NR/SBR composites reached its maximum value when the SA-CaCO3 content was 50 phr or the HAF content was 30 phr. The modulus at 200%, tear strength, and Shore A hardness of filled NR/SBR composites all increased with increasing filler content. The CaCO3 reinforced the NR/SBR blends to some extent, though it was still not as effective as HAF.


2018 ◽  
Vol 38 (4) ◽  
pp. 333-341 ◽  
Author(s):  
Satadru Kashyap ◽  
Dilip Datta

AbstractIndustrial lime sludge (LS), an environmental hazard, is surface modified by stearic acid (SA) in order to reinforce high density polyethylene (HDPE) composites. Uncoated and SA-coated LS-reinforced HDPE composites are prepared and their mechanical, thermal, and morphological properties are studied and compared with each other. FTIR spectroscopy revealed successful grafting of SA onto LS particles while SEM morphology showed that SA coating hinders particle agglomeration in the HDPE matrix at higher filler loading. Mechanical properties such as tensile and flexural strength and modulus, elongation at break, and impact strength increased significantly for SA-coated LS composites due to uniform particle dispersion and effective filler-matrix interfacial interaction. The SA coating increased the entanglement at the filler-matrix interface thereby increasing the thermal decomposition of the coated composites from 500°C to 600°C. Additionally, it also reduced the water absorption rate of the coated composites in comparison with its uncoated counterpart. Thus, SA proves to be an efficient surface modifier for LS to produce HDPE composites with superior properties at a low cost. Needless to say, this study also suggests an alternative LS waste management route which offers benefits of reusing an industrial waste, decreasing the pollution, and developing fresh polymeric products.


2019 ◽  
Vol 33 (12) ◽  
pp. 1692-1706 ◽  
Author(s):  
Chana Prapruddivongs ◽  
Jatsada Rukrabiab ◽  
Nuth Kulwongwit ◽  
Thapanee Wongpreedee

This work studied the properties of poly(lactic acid) (PLA) and chemically crosslinked poly(lactic acid) (CrPLA) in the presence of different types of silica (SiO2): SiO2 from rice husk ash (RhSiO2) and commercially available SiO2 (CoSiO2). A mixture of triallyl isocyanate and dicumyl peroxide was used as a chemical crosslinking agent. The rice husk was burnt in a furnace to extract RhSiO2. The thermal and mechanical properties of the PLA and CrPLA composites were investigated as a function of the SiO2 content. The presence of C–H functional groups supports the compatibility of stearic acid and RhSiO2, thereby facilitating the esterification reaction observed in the Fourier transform infrared-attenuated total reflectance spectra. This played an important role in changing the properties of the PLA-based composites. The concave fracture surfaces were consistent with the tensile results, the thermal properties, and the degree of swelling, which suggested that there was a better reaction between stearic acid and RhSiO2. However, the heat deflection temperatures of both the PLA and the CrPLA composites were not significantly affected by blending with either CoSiO2 or RhSiO2.


1991 ◽  
Vol 64 (1) ◽  
pp. L1-L6 ◽  
Author(s):  
C. Blandy ◽  
D. Gervais ◽  
J.-L. Pellegatta ◽  
B. Gilot ◽  
R. Guiraud

Author(s):  
P. S. Sklad

Over the past several years, it has become increasingly evident that materials for proposed advanced energy systems will be required to operate at high temperatures and in aggressive environments. These constraints make structural ceramics attractive materials for these systems. However it is well known that the condition of the specimen surface of ceramic materials is often critical in controlling properties such as fracture toughness, oxidation resistance, and wear resistance. Ion implantation techniques offer the potential of overcoming some of the surface related limitations.While the effects of implantation on surface sensitive properties may be measured indpendently, it is important to understand the microstructural evolution leading to these changes. Analytical electron microscopy provides a useful tool for characterizing the microstructures produced in terms of solute concentration profiles, second phase formation, lattice damage, crystallinity of the implanted layer, and annealing behavior. Such analyses allow correlations to be made with theoretical models, property measurements, and results of complimentary techniques.


1983 ◽  
Vol 44 (C6) ◽  
pp. C6-285-C6-290 ◽  
Author(s):  
J. W. Childers ◽  
A. L. Crumbliss ◽  
P. S. Lugg ◽  
R. A. Palmer ◽  
N. Morosoff ◽  
...  

2020 ◽  
pp. 114-119

Experimental and theoretical study Porphyrin-grafted ZnO nanowire arrays were investigated for organic/inorganic hybrid solar cell applications. Two types of porphyrin – Tetra (4-carboxyphenyle) TCPP and meso-Tetraphenylporphine (Zinc-TPP)were used to modify the nanowire surfaces. The vertically aligned nanowires with porphyrin modifications were embedded in graphene-enriched poly (3-hexylthiophene) [G-P3HT] for p-n junction nanowire solar cells. Surface grafting of ZnO nanowires was found to improve the solar cell efficiency. There are different effect for the two types of porphyrin as results of Zn existing. Annealing effects on the solar cell performance were investigated by heating the devices up to 225 °C in air. It was found that the cell performance was significantly degraded after annealing. The degradation was attributed to the polymer structural change at high temperature as evidenced by electrochemical impedance spectroscopy measurements.


Sign in / Sign up

Export Citation Format

Share Document