Agricultural plastic mulching as a potential key source of microplastic pollution in the terrestrial ecosystem and consequences

2021 ◽  
Vol 175 ◽  
pp. 105855
Author(s):  
Abdul Qadeer ◽  
Zeeshan Ajmal ◽  
Muhammad Usman ◽  
Xingru Zhao ◽  
Sheng Chang
2015 ◽  
Vol 41 (5) ◽  
pp. 787 ◽  
Author(s):  
Shou-Xi CHAI ◽  
Chang-Gang YANG ◽  
Shu-Fang ZHANG ◽  
Heng-Hong CHEN ◽  
Lei CHANG

2021 ◽  
Vol 312 ◽  
pp. 107354 ◽  
Author(s):  
Ai-Tian Ren ◽  
Rui Zhou ◽  
Fei Mo ◽  
Shu-Tong Liu ◽  
Ji-Yuan Li ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 419
Author(s):  
Jordi Sardans ◽  
Josep Peñuelas

Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem–phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. We synthesized these roles from an integrated perspective, considering the metabolic and physiological functions of individual plants and their complex roles in terrestrial ecosystem functions and food security within the current context of ongoing global change. Thus, we provide a bridge between studies of K+ at the plant and ecological levels to ultimately claim that K+ should be considered at least at a level similar to N and P in terrestrial ecological studies.


2021 ◽  
Vol 102 ◽  
pp. 105275
Author(s):  
Jiasheng Li ◽  
Xiaomin Guo ◽  
Xiaowei Chuai ◽  
Fangjian Xie ◽  
Feng Yang ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Iniyakumar Muniraj ◽  
Syed Shameer ◽  
Priyadharshini Ramachandran ◽  
Sivakumar Uthandi

Abstract Background Humic substances (HS) form the largest proportion among all the constituents of soil organic matter and are a key component of the terrestrial ecosystem. HS plays a multifunctional role in the environment by controlling the biogeochemical carbon cycle, providing nutrients and bio-stimulants for plant growth, and interacting with inorganic and organic pollutants. The rate of formation of HS in soils determines its productivity and carbon sequestration capacity. Enhancement of HS synthesis in the soil through the microbial route not only increases CO2 sequestration but also mitigates the greenhouse gas emissions in the environment. Result In this study, we attempted to understand the mechanism of formation and enhancement of HS from coir pith wastes using the tyrosinase produced by Bacillus aryabhattai TFG5. The bacterium TFG5 isolated from the termite garden produced the tyrosinase (1.34 U mL−1) and laccase (2.1 U mL−1) at 48 h and 60 h of fermentation, respectively. The extracellular tyrosinase from B. aryabhattai TFG5 was designated as TyrB. Homology modeling of TyrB revealed a structure with a predicted molecular mass of 35.23 kDa and two copper ions in the active center with its conserved residues required for the tyrosinase activity. TyrB efficiently transformed and polymerized standard phenols, such as p-cresol, p-hydroxyl benzoic acid, Levo DOPA, and 2,6 DMP, besides transforming free phenols in coir pith wash water (CWW). Additionally, UV–Vis and FT-IR spectra of the degradation products of the coir pith treated with TyrB revealed the formation of HS within 3 days of incubation. Furthermore, the E472/664 ratio of the degradation products revealed a higher degree of condensation of the aromatic carbons and the presence of more aliphatic structures in the HS. Conclusion The results confirmed the influence of TyrB for the effective synthesis of HS from coir pith wastes. The results of the present study also confirm the recently accepted theory of humification proposed by the International Humic Substances Society.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhao Feng ◽  
Haojie Su ◽  
Zhiyao Tang ◽  
Shaopeng Wang ◽  
Xia Zhao ◽  
...  

AbstractGlobal climate change likely alters the structure and function of vegetation and the stability of terrestrial ecosystems. It is therefore important to assess the factors controlling ecosystem resilience from local to global scales. Here we assess terrestrial vegetation resilience over the past 35 years using early warning indicators calculated from normalized difference vegetation index data. On a local scale we find that climate change reduced the resilience of ecosystems in 64.5% of the global terrestrial vegetated area. Temperature had a greater influence on vegetation resilience than precipitation, while climate mean state had a greater influence than climate variability. However, there is no evidence for decreased ecological resilience on larger scales. Instead, climate warming increased spatial asynchrony of vegetation which buffered the global-scale impacts on resilience. We suggest that the response of terrestrial ecosystem resilience to global climate change is scale-dependent and influenced by spatial asynchrony on the global scale.


2006 ◽  
Vol 43 (1) ◽  
pp. 107-111 ◽  
Author(s):  
Yong-Shan Li ◽  
Liang-Huan Wu ◽  
Xing-Hua Lu ◽  
Li-Mei Zhao ◽  
Qiao-Lan Fan ◽  
...  

2008 ◽  
Vol 47 (3) ◽  
pp. 853-868 ◽  
Author(s):  
Tao Zheng ◽  
Shunlin Liang ◽  
Kaicun Wang

Abstract Incident photosynthetically active radiation (PAR) is an important parameter for terrestrial ecosystem models. Because of its high temporal resolution, the Geostationary Operational Environmental Satellite (GOES) observations are very suited to catch the diurnal variation of PAR. In this paper, a new method is developed to derive PAR using GOES data. What makes this new method distinct from the existing method is that it does not need external knowledge of atmospheric conditions. The new method retrieves both atmospheric and surface conditions using only at-sensor radiance through interpolation of time series of observations. Validations against ground measurement are carried out at four “FLUXNET” sites. The values of RMSE of estimated and ground-measured instantaneous PAR at the four sites are 130.71, 131.44, 141.16, and 190.22 μmol m−2 s−1, respectively. At the four validation sites, the RMSE as the percentage of estimated mean PAR value are 9.52%, 13.01%, 13.92%, and 24.09%, respectively; the biases are −101.54, 16.56, 11.09, and 53.64 μmol m−2 s−1, respectively. The independence of external atmospheric information enables this method to be applicable to many situations in which external atmospheric information is not available. In addition, topographic impacts on surface PAR are examined at the 1-km resolution at which PAR is retrieved using the GOES visible band data.


Sign in / Sign up

Export Citation Format

Share Document