Short-term supply reliability assessment of a gas pipeline system under demand variations

2020 ◽  
Vol 202 ◽  
pp. 107004 ◽  
Author(s):  
Qian Chen ◽  
Lili Zuo ◽  
Changchun Wu ◽  
Yaran Bu ◽  
Yifei Lu ◽  
...  
2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Yichen Li ◽  
Jing Gong ◽  
Weichao Yu ◽  
Weihe Huang ◽  
Kai Wen

Abstract At present, China has a developing natural gas market, and ensuring the security of gas supply is an issue of high concern. Gas supply reliability, the natural gas pipeline system's ability to satisfy the market demand, is determined by both supply side and demand side and is usually adopted by the researches to measure the security of gas supply. In the previous study, the demand side is usually simplified by using load duration curve (LDC) to describe the demand, which neglects the effect of demand side management. The simplification leads to the inaccurate and unreasonable assessment of the gas supply reliability, especially in high-demand situation. To overcome this deficiency and achieve a more reasonable result of gas supply reliability, this paper extends the previous study on demand side by proposing a novel method of management on natural gas demand side, and the effects of demand side management on gas supply reliability is analyzed. The management includes natural gas prediction models for different types of users, the user classification rule, and the demand adjustment model based on user classification. First, an autoregressive integrated moving average (ARIMA) model and a support vector machine (SVM) model are applied to predict the natural gas demand for different types of users, such as urban gas distributor (including residential customer, commercial customer, small industrial customer), power plant, large industrial customer, and compressed natural gas (CNG) station. Then, the user classification rule is built based on users' attribute and impact of supplied gas's interruption or reduction. Natural gas users are classified into four levels. (1) demand fully satisfied, (2) demand slightly reduced, (3) demand reduced, and (4) demand interrupted. The user classification rule also provides the demand reduction range of different users. Moreover, the optimization model of demand adjustment is built, and the objective of the model is to maximize the amount of gas supplied to each user based on the classification rule. The constraints of the model are determined by the classification rule, including the demand reduction range of different users. Finally, the improved method of gas supply reliability assessment is developed and is applied to the case study of our previous study derived from a realistic natural gas pipeline system operated by PetroChina to analyze the effects of demand side management on natural gas pipeline system's gas supply reliability.


2019 ◽  
Vol 252 ◽  
pp. 113418 ◽  
Author(s):  
Weichao Yu ◽  
Jing Gong ◽  
Shangfei Song ◽  
Weihe Huang ◽  
Yichen Li ◽  
...  

2018 ◽  
Vol 209 ◽  
pp. 489-501 ◽  
Author(s):  
Huai Su ◽  
Jinjun Zhang ◽  
Enrico Zio ◽  
Nan Yang ◽  
Xueyi Li ◽  
...  

2021 ◽  
Vol 209 ◽  
pp. 107482
Author(s):  
Qian Chen ◽  
Lili Zuo ◽  
Changchun Wu ◽  
Yankai Cao ◽  
Yaran Bu ◽  
...  

Author(s):  
Yichen Li ◽  
Jing Gong ◽  
Weichao Yu ◽  
Weihe Huang ◽  
Kai Wen

Abstract At present, China has a developing natural gas market, and ensuring the security of gas supply is an issue of high concern. Gas supply reliability, the natural gas pipeline system’s ability to satisfy the market demand, is determined by both supply side and demand side, and is usually adopted by the researches to measure the security of gas supply. In the previous study, the demand side is usually simplified by using load duration curve (LDC) to describe the demand, which neglects the effect of demand side management. The simplification leads to the inaccurate and unreasonable assessment of the gas supply reliability, especially in high demand situation. To overcome this deficiency and achieve a more reasonable result of gas supply reliability, this paper extends the previous study on demand side by proposing a novel method of management on natural gas demand side, and the effects of demand side management on gas supply reliability is analyzed. The management includes natural gas prediction models for different types of users, the user classification rule, and the demand adjustment model based on user classification. Firstly, An autoregressive integrated moving average (ARIMA) model and a support vector machine (SVM) model are applied to predict the natural gas demand for different types of users, such as urban gas distributor (including residential customer, commercial customer, small industrial customer), power plant, large industrial customer, and Compressed Natural Gas (CNG) station. Then, the user classification rule is built based on users’ attribute and impact of supplied gas’s interruption or reduction. Natural gas users are classified into four levels. (1) Demand Fully Satisfied; (2) Demand Slightly Reduced; (3) Demand Reduced; (4) Demand Interrupted. The user classification rule also provides the demand reduction range of different users. Moreover, the optimization model of demand adjustment is built, and the objective of the model is to maximize the amount of gas supply for each user based on the classification rule. The constraints of the model are determined by the classification rule, including the demand reduction range of different users. Finally, the improved method of gas supply reliability assessment is developed, and is applied to the case study of our previous study derived from a realistic natural gas pipeline system operated by PetroChina to analyze the effects of demand side management on natural gas pipeline system’s gas supply reliability.


Author(s):  
Lili Zuo ◽  
Changchun Wu ◽  
Li Fan ◽  
Meng Wang

PetroChina owns and operates the largest gas pipeline network in China of more than 10000 km in length, which includes the famous West-East gas pipeline, the first Shannxi-Beijing gas pipeline and the second Shannxi-Beijing gas pipeline etc. As an outstanding feature of the network, its two circuits of pipelines increases the flexibility of gas transmission and the guarantee of gas supply through the network. On the other hand, these two circuits complicate the topological structure, so that it is a challenge to work out an optimal operation scenario for the network. A steady and transient simulation model of the network has been built based on the gas pipeline network simulation software TGNET, and has been tuned by the historical operation data. By means of the model, several winter operation scenarios in 2007 have been simulated. The steady simulations of the network were carried out for the two planed daily flow-rates of West-East gas pipeline respectively, 41 MMSCMD and 45 MMSCMD. Given the steady operation scenarios determined by the steady simulations as the initial conditions, 4 typical short-term peak shaving scenarios in winter high load week have been analyzed, evaluated and optimized with transient simulations. The main difference of those peak shaving scenarios is the flow-rates of West-East gas pipeline and the regulating mode of underground gas storage named Dagang connected to Shanxi-Beijing gas pipeline system. The technologically and economically optimal peak shaving scenario and the optimal control pressure of end stations have been obtained. The research results shows that the actual control pressure of end stations are higher than the optimization results, indicating that the network has the potential of saving energy and reducing spending. These results not only guarantee the safety of gas supply but also reduce the spending of the gas pipeline network, offering an important value of direction for actual operation.


Author(s):  
Lili Zuo ◽  
Changchun Wu ◽  
Hongwei Zheng ◽  
Fukun Zhang

This paper addresses the peak shaving of West-East Gas Pipeline. For a gas pipeline system, the decision-making on the peak shaving scenarios usually involves a delicate balance between low operation cost and high gas supply reliability. In order to select an acceptable peak shaving scenario from these two angles for West-East Gas Pipeline, the idea of multi-objective decision-making has been introduced. Based on design flow-rate, eight typical peak shaving scenarios have been evaluated, analyzed and optimized with the help of TGNET. During the simulation, in order to make the peak shaving process more approach to the actual operation of the pipeline system, 51 days of forecasted data are used to establish the system starting state for the study period. On the other hand, in order to reduce the effect of different peak shaving process to the subsequent operation, the study period is extended by 7 days to fully account for operating costs and conditions subsequent to the study period, which make different peak shaving scenarios comparable. According to multi-objective optimization criteria including operation cost, gas supply reliability and operation stability, different pareto peak shaving scenarios have been obtained. These scenarios show that from the object of minimizing operation cost, inlet pressure of Shanghai terminal should approach to contractual pressure, from the object of gas supply reliability and operation stability, inlet pressure of Shanghai terminal should maintain a higher value. Operators can adopt different peak shaving scenarios according to different optimization object. Furthermore, with mathematical statistics knowledge, control value of inlet pressure of Shanghai terminal is recommended. When the change of withdrawal flow-rate from underground gas storage is more frequent, the fluctuation of inlet flow-rate is smaller. When withdrawal flow-rate from underground natural gas storage increases, it will not only increase the inventory of whole pipeline and end segment, but also decrease the inlet flow-rate.


Author(s):  
Duzhi Jiang ◽  
Jing Gong ◽  
Bo Li

In order to know roundly the run circumstances of the gas pipeline system under different conditions, predict the impact of diversified factors and the adaptability of the gas pipeline to the customer requirements, this paper makes hydraulic analyses for three kinds of gas-breakout accidents that happen possibly in the west-east pipeline, and constitutes the corresponding control methods. Through the analyses, we can understand syllabify the influencing degree and process that the short-term accidents caused by different sections impose on the pipeline’s natural run. These analytical results will have directive effects on compiling the compilation schemes to rush to repair the pipeline, deciding the scheme of gas storage construction and keeping the pipeline running safely.


Author(s):  
Mohadese Jahanian ◽  
Amin Ramezani ◽  
Ali Moarefianpour ◽  
Mahdi Aliari Shouredeli

One of the most significant systems that can be expressed by partial differential equations (PDEs) is the transmission pipeline system. To avoid the accidents that originated from oil and gas pipeline leakage, the exact location and quantity of leakage are required to be recognized. The designed goal is a leakage diagnosis based on the system model and the use of real data provided by transmission line systems. Nonlinear equations of the system have been extracted employing continuity and momentum equations. In this paper, the extended Kalman filter (EKF) is used to detect and locate the leakage and to attenuate the negative effects of measurement and process noises. Besides, a robust extended Kalman filter (REKF) is applied to compensate for the effect of parameter uncertainty. The quantity and the location of the occurred leakage are estimated along the pipeline. Simulation results show that REKF has better estimations of the leak and its location as compared with that of EKF. This filter is robust against process noise, measurement noise, parameter uncertainties, and guarantees a higher limit for the covariance of state estimation error as well. It is remarkable that simulation results are evaluated by OLGA software.


Sign in / Sign up

Export Citation Format

Share Document