scholarly journals Effect of temperature on the pyrolysis of plastic waste using zeolite ZSM-5 using a refinery distillation bubble cap plate column

2021 ◽  
pp. 100231
Author(s):  
Ramli Thahir ◽  
Muh Irwan ◽  
Alwathan Alwathan ◽  
Ramli Ramli
2020 ◽  
Vol 5 (1) ◽  
pp. 939-944
Author(s):  
Yoel Pasae ◽  
Lyse Bulo ◽  
Chrisnovan Lande ◽  
Eda Lolo Allo

The increasing use of plastic makes plastic waste the number one contributor to environmental damage in the world. The type of plastic that is most often found as waste is Polypropylene (PP). One way to overcome this problem is to convert plastic into liquid oil, which can be used for various purposes in the chemical industry or as an alternative fuel. Pyrolysis is a technology commonly used to convert plastics into liquid oil, and can be done by the public. But the availability of pyrolysis reactors that are easy and safe to operate is something that needs attention. In this research, a pyrolysis reactor with a capacity of 1 kg / batch has been modified from a gas cylinder. The pyrolysis process was carried out at 250°C, 275°C, 300°C, 325°C and 350°C with a reaction time of 120 minutes. The results showed that pyrolysis at 350°C can produce the highest yield of 62.56%. Through testing using Gas Chromatograpy-Mass Spectroscopy it is known that the liquid oil obtained consists of several groups of compounds or derivatives from Hexane, Heptane, Isotridecanol, Dodecana, Cyclohexana, Benzene, Pentane, and Octana.


Konversi ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Nurull Fanani ◽  
Eky Novianarenti ◽  
Erlinda Ningsih ◽  
Kartika Udyani ◽  
Ari Prayitno ◽  
...  

Proper processing to overcome the abundance of plastic waste is needed. Currently, pyrolysis technology is one method that can overcome plastic waste. Pyrolysis is a thermochemical process, which breaks down long alkyl chains into hydrocarbons at high temperatures. This study aims to determine the effect of temperature on yield and heating value using the analysis of variance (ANOVA) method. The pyrolysis of plastic waste is carried out with HDPE plastic material. The pyrolysis process is carried out in a reactor with 50 grams of feed at various temperatures of 500, 550, 600 and 650⁰C. The conclusion that can be drawn from this research is that there is a decrease in yield and calorific value with increasing temperature. The results of the analysis concluded that temperature had an effect on the yield produced and the calorific value of the product. The best yield was obtained at 35.86% and a heating value of 10530.461cal / g at a temperature of 100oC. Based on the results of data analysis using the ANOVA method, it was found that the experimental hypothesis was that temperature had an effect on yield and calorific value.


2019 ◽  
Vol 5 ◽  
pp. 70-77 ◽  
Author(s):  
Ramli Thahir ◽  
Ali Altway ◽  
Sri Rachmania Juliastuti ◽  
Susianto

2019 ◽  
Vol 1 (1) ◽  
pp. 1-11
Author(s):  
Sumiati Sumiati ◽  
Mahmuda Mahmuda ◽  
A Syapawi

Kerusakan jalan akhir-akhir ini semakin sering terjadi pada lapis perkerasan jalan  berupa  retak-retak, terkelupasnya agregat, lubang-lubang hingga amblasnya perkerasan jalan. Hal  ini dapat terjadi disebabkan: tingginya temperatur permukaan jalan, intensitas curah hujan yang sulit diprediksi serta beban lalulintas yang semakin hari semakin bertambah. Aspal modifikasi dibuat dengan menambahkan bahan yang bersifat elastomer seperti karet alam, maupun karet sintetis dan bahan plastik, sehingga dapat meningkatkan sifat-sifat fisik dari aspal seperti: elastisitas, ketahanan terhadap temperatur dan dapat meningkatkan stabilitas pada campuran aspal beton. Uji coba pemanfaatan limbah plastik sebagai bahan pengganti aspal telah dilaksanakan pada jalan nasional di Indonesia maupun di Manca negara, hal ini menimbulkan pro dan kontra dari  aktivis lingkungan. Namun menurut beberapa sumber menyatakan bahwa aspal modifikasi ini bisa bertahan di suhu ekstrem (- 4,5oC hingga  80oC). Berdasarkan permasalahan di atas akan diteliti, berapa persen limbah plastik HDPE yang efektif ditambahkan pada aspal modifikasi untuk campuran Laston (AC-BC) agar tahan terhadap cuaca ekstrem.  Pengujian dilakukan pada 75 benda uji dengan kadar aspal optimum 5,4 % dan limbah plastik HDPE bervariasi 0%; 2%; 4%; 6% dan 8% terhadap berat aspal. Untuk mengetahui pengaruh suhu dari campuran Laston, sebelum dilakukan Marshall Test, terlebih dahulu benda uji direndam pada suhu 60oC; 70oC; 80oC selama 30 menit dan 60oC  selama 24 jam. Berdasarkan Spesifikasi Lapis Perkerasan aspal (Bina Marga revisi 3, 2010), limbah plastik HDPE yang dapat ditambahkan pada campuran LASTON (AC-BC)  hanya   2-4 % terhadap berat aspal, yang memenuhi nilai karakteristik Marshall dan tahan terhadap cuaca ekstrem.Kata kunci: Limbah plastik HDPE, aspal beton, cuaca ekstrem Recent road damage is increasingly common in pavement layers in the form of cracks, peeling aggregates, holes, until the pavement is inundated. This can happen because: the high surface temperature of the road, the intensity of rainfall that is difficult to predict and the traffic load that increasingly day. Asphalt modification is made by adding elastomeric materials such as natural rubber, as well as synthetic rubber and plastic materials, so as to enhance the physical properties of asphalt such as: elasticity, resistance to temperature; and can increase the stability of concrete asphalt mixture. Plastic waste utilization trials as asphalt substitute have been implemented on national roads in Indonesia as well as in many countries, leading to the pros and cons of environmental activists. However, some sources have stated that this modified asphalt can survive in extreme temperatures (- 4.5°C to 80°C). However, according to some sources stated that this modified asphalt can survive in extreme temperatures (- 4.5°C to 80°C). Based on the above issues, it was examined how much the effective percentage of HDPE plastic waste was added to modified asphalt for the Laston mixture (AC-BC) which was resistant to extreme weather. The test was conducted on 75 specimens with optimum asphalt content of 5.4% and HDPE plastic waste varied 0%; 2%; 4%; 6% and 8% to asphalt weight. To determine the effect of temperature from the mixture of Laston, before the Marshall Test conducted, the first specimen is immersed at 60°C; 70°C; 80°C for 30 minutes and 60°C for 24 hours. Based on Asphalt Pavement Specification (Bina Marga Revision 3, 2010), the HDPE plastic waste that can be added to the LASTON (AC-BC) mixture is only 2-4% of the asphalt weight, which meets the Marshall characteristics and is resistant to extreme weather.Key words: HDPE plastic waste, concrete asphalt, extreme weather


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


1990 ◽  
Vol 80 (3) ◽  
pp. 431-436 ◽  
Author(s):  
Isabelle Delvallee ◽  
Annie Paffen ◽  
Geert-Jan De Klerk

1973 ◽  
Vol 29 (01) ◽  
pp. 183-189
Author(s):  
C. A Praga ◽  
E. M Pogliani

SummaryTemperature represents a very important variable in ADP-induced platelet aggregation.When low doses of ADP ( < 1 (μM) are used to induce platelet aggregation, the length of the incubation period of PRP in the cuvette holder of the aggregometer, thermostatted at 37° C, is very critical. Samples of the same PRP previously kept at room temperature, were incubated for increasing periods of time in the cuvette of the aggregometer before adding ADP, and a significant decrease of aggregation, proportional to the length of incubation, was observed. Stirring of the PRP during the incubation period made these changes more evident.To measure the exact temperature of the PRP during incubation in the aggre- gometer, a thermocouple device was used. While the temperature of the cuvette holder was stable at 37° C, the PRP temperature itself increased exponentially, taking about ten minutes from the beginning of the incubation to reach the value of 37° C. The above results have a practical significance in the reproducibility of the platelet aggregation test in vitro and acquire particular value when the effect of inhibitors of ADP induced platelet aggregation is studied.Experiments carried out with three anti-aggregating agents (acetyl salicyclic acid, dipyridamole and metergoline) have shown that the incubation conditions which influence both the effect of the drugs on platelets and the ADP breakdown in plasma must be strictly controlled.


Sign in / Sign up

Export Citation Format

Share Document