An empirical anisotropy correction model for estimating land surface albedo for radiation budget studies

2009 ◽  
Vol 113 (1) ◽  
pp. 24-39 ◽  
Author(s):  
Yu Cui ◽  
Yasushi Mitomi ◽  
Tamio Takamura
2012 ◽  
Vol 25 (2) ◽  
pp. 704-719 ◽  
Author(s):  
Marc P. Marcella ◽  
Elfatih A. B. Eltahir

Abstract Presented is a study on the role of land surface processes in determining the summertime climate over the semiarid region of southwest Asia. In this region, a warm surface air temperature bias of 3.5°C is simulated in the summer by using the standard configuration of Regional Climate Model version 3 (RegCM3). Biases are also simulated in surface albedo (underestimation), shortwave incident radiation (overestimation), and vapor pressure (underestimation). Based on satellite measurements documented in NASA’s surface radiation budget (SRB) dataset, a correction in surface albedo by 4% is introduced in RegCM3 to match the observed SRB data. Increasing albedo values results in a nearly 1°C cooling over the region. In addition, by incorporating RegCM3’s dust module and including subgrid variability for surface wind, shortwave incident radiation bias originally of about 45 W m−2 is reduced by 30 W m−2. As a result, the reduction of shortwave incident radiation cools the surface by 0.6°C. Finally, including a representation for the irrigation and marshlands of Mesopotamia produces surface relative humidity values closer to observations, thus eliminating a nearly 5-mb vapor pressure dry bias over some of the region. Consequently, the representation of irrigation and marshlands results in cooling of nearly 1°C in areas downwind of the actual land-cover change. Along with identified biases in observational datasets, these combined processes explain the 3.5°C warm bias in RegCM3 simulations. Therefore, it is found that accurate representations of surface albedo, dust emissions, and irrigation are important in correctly modeling summertime climates of semiarid regions.


2008 ◽  
Vol 21 (18) ◽  
pp. 4723-4748 ◽  
Author(s):  
A. Bodas-Salcedo ◽  
M. A. Ringer ◽  
A. Jones

Abstract The partitioning of the earth radiation budget (ERB) between its atmosphere and surface components is of crucial interest in climate studies as it has a significant role in the oceanic and atmospheric general circulation. An analysis of the present-day climate simulation of the surface radiation budget in the atmospheric component of the new Hadley Centre Global Environmental Model version 1 (HadGEM1) is presented, and the simulations are assessed by comparing the results with fluxes derived from satellite data from the International Satellite Cloud Climatology Project (ISCCP) and ground measurements from the Baseline Surface Radiation Network (BSRN). Comparisons against radiative fluxes from satellite and ground observations show that the model tends to overestimate the surface incoming solar radiation (Ss,d). The model simulates Ss,d very well over the polar regions. Consistency in the comparisons against BSRN and ISCCP-FD suggests that the ISCCP-FD database is a good test for the performance of the surface downwelling solar radiation in climate model simulations. Overall, the simulation of downward longwave radiation is closer to observations than its shortwave counterpart. The model underestimates the downward longwave radiation with respect to BSRN measurements by 6.0 W m−2. Comparisons of land surface albedo from the model and estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that HadGEM1 overestimates the land surface albedo over deserts and over midlatitude landmasses in the Northern Hemisphere in January. Analysis of the seasonal cycle of the land surface albedo in different regions shows that the amplitude and phase of the seasonal cycle are not well represented in the model, although a more extensive validation needs to be carried out. Two decades of coupled model simulations of the twentieth-century climate are used to look into the model’s simulation of global dimming/brightening. The model results are in line with the conclusions of the studies that suggest that global dimming is far from being a uniform phenomenon across the globe.


2008 ◽  
Vol 47 (11) ◽  
pp. 2963-2982 ◽  
Author(s):  
Fanglin Yang ◽  
Kenneth Mitchell ◽  
Yu-Tai Hou ◽  
Yongjiu Dai ◽  
Xubin Zeng ◽  
...  

Abstract This study examines the dependence of surface albedo on solar zenith angle (SZA) over snow-free land surfaces using the intensive observations of surface shortwave fluxes made by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program and the National Oceanic and Atmospheric Administration Surface Radiation Budget Network (SURFRAD) in 1997–2005. Results are used to evaluate the National Centers for Environmental Prediction (NCEP) Global Forecast Systems (GFS) parameterization and several new parameterizations derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) products. The influence of clouds on surface albedo and the albedo difference between morning and afternoon observations are also investigated. A new approach is taken to partition the observed upward flux so that the direct-beam and diffuse albedos can be separately computed. The study focused first on the ARM Southern Great Plains Central Facility site. It is found that the diffuse albedo prescribed in the NCEP GFS matched closely with the observations. The direct-beam albedo parameterized in the GFS is largely underestimated at all SZAs. The parameterizations derived from the MODIS product underestimated the direct-beam albedo at large SZAs and slightly overestimated it at small SZAs. Similar results are obtained from the analyses of observations at other stations. It is also found that the morning and afternoon dependencies of direct-beam albedo on SZA differ among the stations. Attempts are made to improve numerical model algorithms that parameterize the direct-beam albedo as a product of the direct-beam albedo at SZA = 60° (or the diffuse albedo), which varies with surface type or geographical location and/or season, and a function that depends only on SZA. A method is presented for computing the direct-beam albedos over these snow-free land points without referring to a particular land-cover classification scheme, which often differs from model to model.


2018 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
Zakaria Marouf BARKA ◽  
Théophile Lealea ◽  
Rene Tchinda

Surface albedo is one parameter of the climate variables. It influences the surface radiation budget for a given site. The availability of surface albedo data at both temporally and spatially levels are needed. In the lack of ground recorded values of albedo, we have to estimate surface albedo from the climatic variables. The model generated in this study enables the continuous observation of land surface albedo through relative model established from the multivariate regression method. From satellite recorded data, we estimate the ground surface albedo for some selected sites. The result were satisfactory with the root mean square error (RMSE) is 0.035. The Mean Absolute Error (MAE) was computed and indicated to be as low as 0.027 and mean absolute percentage error (MAPE) is 7.58.  


2021 ◽  
Vol 13 (23) ◽  
pp. 4869
Author(s):  
Congying Shao ◽  
Yanmin Shuai ◽  
Latipa Tuerhanjiang ◽  
Xuexi Ma ◽  
Weijie Hu ◽  
...  

Surface albedo, as an important parameter for land surface geo-biophysical and geo-biochemical processes, has been widely used in the research communities involved in surface energy balance, weather forecasting, atmospheric circulation, and land surface process models. In recent years, operational products using satellite-based surface albedo have, from time to time, been rapidly developed, contributing significantly to the estimation of energy balance at regional or global scales. The increasing number of research topics on dynamic monitoring at a decades-long scale requires a combination of albedo products generated from various sensors or programs, while the quantitative assessment of agreement or divergence among different surface albedo products still needs further understanding. In this paper, we investigated the consistency of three classical operational surface albedo products that have been frequently used by researchers globally via the official issued datasets-MODIS, GLASS (Global LAnd Surface Satellite), and CGLS (Copernicus Global Land Service). The cross-comparison was performed on all the identical dates available during 2000–2017 to represent four season-phases. We investigated the pixel-based validity of each product, consistency of global annual mean, spatial distribution and different temporal dynamics among the discussed products in white-sky (WSA) and black-sky (BSA) albedo at visible (VIS), near-infrared (NIR), and shortwave (SW) regimes. Further, varying features along with the change of seasons was also examined. In addition, the variation in accuracy of shortwave albedo magnitude was explored using ground measurements collected by the Baseline Surface Radiation Network (BSRN) and the Surface Radiation Budget Network (SUFRAD). Results show that: (1) All three products can provide valid long-term albedo for dominant land surface, while GLASS can provide additional estimation over sea surfaces, with the highest percentage of valid land surface pixels, at up to 93% in October 24. The invalid pixels mainly existed in the 50°N–60°N latitude belt in December for GLASS, Central Africa in April and August for MODIS, and northern high latitudes for CGLS. (2) The global mean albedo of CGLS at the investigated bands has significantly higher values than those of MODIS and GLASS, with a relative difference of ~20% among the three products. The global mean albedo of MODIS and GLASS show a generally increasing trend from April to December, with an abrupt rise at NIR and SW of CGLS in June of 2014. Compared with SW and VIS bands, the linear temporal trend of the NIR global albedo mean in three products continues to increase, but the slope of CGLS is 10–100 times greater than that of the other two products. (3) The differences in albedo, which are higher in April, October, and December than in August, exhibit a small variation over the main global land surface regions, except for Central Eurasia, North Africa, and middle North America. The magnitude of global absolute difference among the three products usually varies within 0.02–0.06, but with the largest value occasionally exceeding 0.1. The relative difference is mainly within 10%–20%, and can deviate more than 40% away from the baseline. In addition, CGLS has a greater opportunity to achieve the largest difference compared with MODIS and GLASS. (4) The comparison with ground measurements indicates that MODIS generally performs better than GLASS and CGLS at the sites discussed. This study demonstrates that apparent differences exist among the three investigated albedo products due to the ingested source data, algorithm, atmosphere correction etc., and also points at caution regarding data fusion when multiple albedo products were organized to serve the following applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Chunlei Meng

Surface albedo is a crucial parameter in land surface radiation budget. As bias exists between the model simulated and observed surface albedo, data assimilation is an important method to improve the simulation results. Moreover, surface albedo is associated with the wavelength of the sunlight. So, solar radiation partitioning is important to parameterize the surface albedo. In this paper, the moderate resolution imaging spectroradiometer- (MODIS-) retrieved direct visible, direct near-infrared, diffuse visible, and diffuse near-infrared surface albedos were assimilated into the integrated urban land model (IUM). The solar radiation partitioning method was introduced to parameterize the surface albedo. Based on the albedo data from MODIS and the solar radiation partitioning method, the surface albedo data set for the Beijing municipal area was generated. Based on the surface albedo data set and the IUM, the impacts of the surface albedo on the surface radiation budget were discussed quantitatively. Surface albedo is inversely proportional to the net radiation. For urban areas, after assimilation, the annual average net radiation decreases about 5.6%. For cropland, grassland, and forest areas, after assimilation, the annual average net radiations increase about 20.2%, 24.3%, and 18.7%, respectively.


2020 ◽  
Vol 33 (2) ◽  
pp. 597-609 ◽  
Author(s):  
M. Belke-Brea ◽  
F. Domine ◽  
M. Barrere ◽  
G. Picard ◽  
L. Arnaud

AbstractErect shrubs in the Arctic reduce surface albedo when branches protrude above the snow and modify snow properties, in particular specific surface area (SSA). Important consequences are changes in the land surface–atmosphere energy exchange and the increase of snow melting in autumn, possibly inducing reduced soil thermal insulation and in turn permafrost cooling. Near Umiujaq (56.5°N, 76.5°W) in the Canadian low Arctic where dwarf birches (Betula glandulosa) are expanding, spectral albedo (400–1080 nm) under diffuse light and vertical profiles of SSA were measured in November and December 2015 at four sites: three with protruding branches and one with only snow. At the beginning of the snow season (8 November), shrub-induced albedo reductions were found to be wavelength dependent and as high as 55% at 500 nm and 18% at 1000 nm, which, integrated over the measurement range (400–1080 nm), corresponds to 70 W m−2 of additional absorbed energy. The impact of shrubs is not just snow darkening. They also affect snow SSA in multiple ways, by accumulating snow with high SSA during cold windy precipitation and favoring SSA decrease by inducing melting during warm spells. However, the impact on the radiation budget of direct darkening from shrubs likely dominates over the indirect change in SSA. Spectral albedo was simulated with a linear mixing equation (LME), which fitted well with observed spectra. The average root-mean-square error was 0.009. We conclude that LMEs are a suitable tool to parameterize mixed surface albedo in snow and climate models.


2020 ◽  
Vol 12 (24) ◽  
pp. 4131
Author(s):  
Mengsi Wang ◽  
Xianlei Fan ◽  
Xijia Li ◽  
Qiang Liu ◽  
Ying Qu

Land surface albedo is an important variable for Earth’s radiation and energy budget. Over the past decades, many surface albedo products have been derived from a variety of remote sensing data. However, the estimation accuracy, temporal resolution, and temporal continuity of these datasets still need to be improved. We developed a multi-sensor strategy (MSS) based on the direct-estimation algorithm (DEA) and Statistical-Based Temporal Filter (STF) to improve the quality of land surface albedo datasets. The moderate-resolution imaging spectroradiometer (MODIS) data onboard Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi-National Polar-orbiting Partnership (NPP) were used as multi-sensor data. The MCD43A3 product and in situ measurements from the Surface Radiation Budget Network (SURFRAD) and FLUXNET sites were employed for validation and comparison. The results showed that the proposed MSS method significantly improved the temporal continuity and estimation accuracy during the snow-covered period, which was more consistent with the measurements of SURFRAD (R = 0.9498, root mean square error (RMSE) = 0.0387, and bias = −0.0017) and FLUXNET (R = 0.9421, RMSE = 0.0330, and bias = 0.0002) sites. Moreover, this is a promising method to generate long-term, spatiotemporal continuous land surface albedo datasets with high temporal resolution.


Author(s):  
X. Li ◽  
X. Fan ◽  
H. Yan ◽  
A. Li ◽  
M. Wang ◽  
...  

Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jacob R. Schaperow ◽  
Dongyue Li ◽  
Steven A. Margulis ◽  
Dennis P. Lettenmaier

AbstractHydrologic models predict the spatial and temporal distribution of water and energy at the land surface. Currently, parameter availability limits global-scale hydrologic modelling to very coarse resolution, hindering researchers from resolving fine-scale variability. With the aim of addressing this problem, we present a set of globally consistent soil and vegetation parameters for the Variable Infiltration Capacity (VIC) model at 1/16° resolution (approximately 6 km at the equator), with spatial coverage from 60°S to 85°N. Soil parameters derived from interpolated soil profiles and vegetation parameters estimated from space-based MODIS measurements have been compiled into input files for both the Classic and Image drivers of the VIC model, version 5. Geographical subsetting codes are provided, as well. Our dataset provides all necessary land surface parameters to run the VIC model at regional to global scale. We evaluate VICGlobal’s ability to simulate the water balance in the Upper Colorado River basin and 12 smaller basins in the CONUS, and their ability to simulate the radiation budget at six SURFRAD stations in the CONUS.


Sign in / Sign up

Export Citation Format

Share Document