scholarly journals Detection of signals linked to climate change, land-cover change and climate oscillators in Tropical Montane Cloud Forests

2021 ◽  
Vol 260 ◽  
pp. 112431
Author(s):  
Sietse O. Los ◽  
F. Alayne Street-Perrott ◽  
Neil J. Loader ◽  
Cynthia A. Froyd
Author(s):  
Gizachew Kabite ◽  
Misgana Muleta ◽  
Berhan Gessesse

Land cover and climate changes greatly influence hydrologic responses of a basin. However, the response vary from basin to basin depending on the nature and severity of the changes and basin characteristics. Moreover, the combined impacts of the changes affect hydrologic responses of a basin in an offsetting or synergistic manner. This study quantified the separate and combined impacts, and the relative contributions of land cover and climate changes on multiple hydrological regimes (i.e., surface runoff, streamflow, groundwater recharge evapotranspiration) for the Dhidhessa Subbasin. Land cover and climate change data were obtained from a recent study completed for the basin. Calibrated Soil and Water Analysis Tool (SWAT) was used to quantify the impacts. The result showed that SWAT model performed well for the Dhidhessa Subbasin in predicting the water balance components. Substantial land cover change as well as an increasing temperature and rainfall trends were reported in the river basin during the past three decades. In response to these changes, surface runoff, streamflow and actual evapotranspiration (AET) increased while groundwater recharge declined. Surface runoff was more sensitive to land cover than to climate changes whereas streamflow and AET were more sensitive to climate change than to land cover change. The combined impacts played offsetting effect on groundwater recharge and AET while inconsistent effects within study periods for other hydrologic responses. Overall, the predicted hydrologic responses will have negative impacts on agricultural production and water resources availability. Therefore, the implementation of integrated watershed management strategies such as soil and water conservation and afforestation could reverse the negative impacts.


2015 ◽  
Vol 12 (6) ◽  
pp. 5219-5250 ◽  
Author(s):  
A. Molina ◽  
V. Vanacker ◽  
E. Brisson ◽  
D. Mora ◽  
V. Balthazar

Abstract. Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974–2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño–Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.


Author(s):  
E. Ramadan ◽  
T. Al-Awadhi ◽  
Y. Charabi

The study of land cover/land use dynamics under climate change conditions is of great significance for improving sustainable ecological management. Understanding the relationships between land cover and land use changes and climate change is thus very important. Understanding the interactive and cumulative effects of climate and land-use changes are a priority for urban planners and policy makers. The present investigation is based on Landsat satellite imagery to explore changes in vegetation spatial distribution between the years from 2000 to2018 The methodology is focused on vegetation indexes tracking and algebraic overlay calculation to analyzed vegetation and their spatial differentiation, land cover change pattern, and the relationships between vegetation dynamics and land cover change in Dhofar Governorate. The study results have revealed that the vegetation vigor is lower in all years compared to 2000. The scene of 2010 shows the minimum vegetation vigor, overall. Besides, the investigation shows a statistical relationship between rainfall and the status of the health of vegetation. Monsoon rainfall has an impact of the growth of vegetation. Between 2012 and 2013, the vegetation activity shows a decreasing trend. The analysis diagnoses an area affected by the worst degree of aridity situated in the southeastern of Dhofar Mountains. Climate change is the main driving factor resulted from both human activities and rainfall fluctuation.


Author(s):  
Haochen Yu ◽  
Zhengfu Bian ◽  
Shouguo Mu ◽  
Junfang Yuan ◽  
Fu Chen

Since the Silk-road Economic belt initiatives were proposed, Xinjiang has provided a vital strategic link between China and Central Asia and even Eurasia. However, owing to the weak and vulnerable ecosystem in this arid region, even a slight climate change would probably disrupt vegetation dynamics and land cover change. Thus, there is an urgent need to determine the Normalized Difference Vegetation Index (NDVI) and Land-use/Land-cover (LULC) responses to climate change. Here, the extreme-point symmetric mode decomposition (ESMD) method and linear regression method (LRM) were applied to recognize the variation trends of the NDVI, temperature, and precipitation between the growing season and other seasons. Combining the transfer matrix of LULC, the Pearson correlation analysis was utilized to reveal the response of NDVI to climate change and climate extremes. The results showed that: (1) Extreme temperature showed greater variation than extreme precipitation. Both the ESMD and the LRM exhibited an increased volatility trend for the NDVI, with the significant improvement regions mainly located in the margin of basins. (2) Since climate change had a warming trend, the permanent snow has been reduced by 20,436 km2. The NDVI has a higher correlation to precipitation than temperature. Furthermore, the humid trend could provide more suitable conditions for vegetation growth, but the warm trend might prevent vegetation growth. Spatially, the response of the NDVI in North Xinjiang (NXC) was more sensitive to precipitation than that in South Xinjiang (SXC). Seasonally, the NDVI has a greater correlation to precipitation in spring and summer, but the opposite occurs in autumn. (3) The response of the NDVI to extreme precipitation was stronger than the response to extreme temperature. The reduction in diurnal temperature variation was beneficial to vegetation growth. Therefore, continuous concentrated precipitation and higher night-time-temperatures could enhance vegetation growth in Xinjiang. This study could enrich the understanding of the response of land cover change and vegetation dynamics to climate extremes and provide scientific support for eco-environment sustainable management in the arid regions.


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jianwu Yan ◽  
Baozhang Chen ◽  
Min Feng ◽  
John L. Innes ◽  
Guangyu Wang ◽  
...  

Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS)). Our findings are summarized as follows. (i) Spatiotemporal variation patterns of sensible heat flux (H) and evapotranspiration (ET) under the land cover scenarios (A2a or B2a) and climate change scenario (A1B) are unanimous. (ii) BothHand ET take on a single peak pattern, and the peak occurs in June or July. (iii) Based on the regional interannual variability analysis,Hdisplays a downward trend (10%) and ET presents an increasing trend (15%). (iv) The annual averageHand ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.


Sign in / Sign up

Export Citation Format

Share Document