Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity

Author(s):  
Syed Baker ◽  
K. Mohan Kumar ◽  
P. Santosh ◽  
D. Rakshith ◽  
S. Satish
Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


2018 ◽  
Vol 14 (2) ◽  
pp. 601-607 ◽  
Author(s):  
Valerie Aurore ◽  
Fabienne Caldana ◽  
Marianne Blanchard ◽  
Solange Kharoubi Hess ◽  
Nils Lannes ◽  
...  

2013 ◽  
Vol 8 (3) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Achara Dholvitayakhun ◽  
Nathanon Trachoo ◽  
Uthai Sakee ◽  
T.P. Tim Cushnie

Foodborne disease is a major public health problem. The present study examined Annona squamosa leaves, which are traditionally used to treat diarrhea and other infections, for their potential to be used in modern food safety or medicine. Active constituents were partially purified by ethanol extraction and column chromatography. MICs of the extract were 62.5 to 125 μg/mL against Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus, and 250 μg/mL against Campylobacter jejuni. In time-kill assays, 500 μg/mL of the extract reduced colony forming unit numbers of C. jejuni almost 10 000-fold within 12 hours. Similar decreases were seen against B. cereus, but over a longer time-frame. LC-MS analysis indicated the presence of reticuline and oxophoebine. Assessment of stability by MIC assay showed activity was heat-labile, with loss of activity greatest following high temperature treatments. Activity was relatively stable at refrigeration temperature. These results indicate A. squamosa has broad-spectrum but heat-labile activity against foodborne bacterial pathogens, and bactericidal activity against B. cereus and C. jejuni. This bactericidal activity is not sufficiently rapid for A. squamosa to be used as a food sanitizer, but the extract could potentially be developed as an additive for refrigerated foods, or a modern treatment for foodborne illness.


2019 ◽  
Vol 20 (6) ◽  
pp. 1502 ◽  
Author(s):  
Álvaro González-Garcinuño ◽  
Rubén Masa ◽  
María Hernández ◽  
Ángel Domínguez ◽  
Antonio Tabernero ◽  
...  

An environmentally friendly technique was used to produce levan-capped silver nanoparticles of about 30 nm (with a loading of 30%) that showed bactericide effect, for E. coli and B. subtilis. That effect was mathematically studied with a dose-response model (lethal dose of 12.4 ppm and 6.8 ppm respectively). These silver nanoparticles were subsequently introduced in a gel to create a silver release system with bacteria inhibition activity. Silver release from the gel and its bactericidal activity was theoretically studied to develop a unique model that is able to predict accurately both silver release and lethal dose for any type of bacteria. This model will be useful for performing predictions for future silver in gel applications.


2014 ◽  
Vol 16 (11) ◽  
Author(s):  
Roselaine da S. Oliveira ◽  
Marcos A. Bizeto ◽  
Ana M. A. Liberatore ◽  
Ivan H. J. Koh ◽  
Fernanda F. Camilo

Sign in / Sign up

Export Citation Format

Share Document