scholarly journals Accumulation of seed storage proteins in Cleome gynandra L. and Brassica kaber L.

2006 ◽  
Vol 72 (2) ◽  
pp. 238-244 ◽  
Author(s):  
J.O. Ochuodho ◽  
A.T. Modi ◽  
M. Beukes
Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
Mahmudur Rahman ◽  
Lei Liu ◽  
Bronwyn J. Barkla

Rapeseed oil-extracted expeller cake mostly contains protein. Various approaches have been used to isolate, detect and measure proteins in rapeseeds, with a particular focus on seed storage proteins (SSPs). To maximize the protein yield and minimize hazardous chemical use, isolation costs and the loss of seed material, optimization of the extraction method is pivotal. For some studies, it is also necessary to minimize or avoid seed-to-seed cross-contamination for phenotyping and single-tissue type analysis to know the exact amount of any bioactive component in a single seed, rather than a mixture of multiple seeds. However, a simple and robust method for single rapeseed seed protein extraction (SRPE) is unavailable. To establish a strategy for optimizing SRPE for downstream gel-based protein analysis, yielding the highest amount of SSPs in the most economical and rapid way, a variety of different approaches were tested, including variations to the seed pulverization steps, changes to the compositions of solvents and reagents and adjustments to the protein recovery steps. Following SRPE, 1D-SDS-PAGE was used to assess the quality and amount of proteins extracted. A standardized SRPE procedure was developed and then tested for yield and reproducibility. The highest protein yield and quality were obtained using a ball grinder with stainless steel beads in Safe-Lock microcentrifuge tubes with methanol as the solvent, providing a highly efficient, economic and effective method. The usefulness of this SRPE was validated by applying the procedure to extract protein from different Brassica oilseeds and for screening an ethyl methane sulfonate (EMS) mutant population of Brassica rapa R-0-18. The outcomes provide useful methodology for identifying and characterizing the SSPs in the SRPE.


1994 ◽  
Vol 45 (6) ◽  
pp. 699-708 ◽  
Author(s):  
Joan E. Krochko ◽  
David J. Bantroch ◽  
John S. Greenwood ◽  
J. Derek Bewley

Genome ◽  
2002 ◽  
Vol 45 (4) ◽  
pp. 661-669 ◽  
Author(s):  
Ali Masoudi-Nejad ◽  
Shuhei Nasuda ◽  
Akira Kawabe ◽  
Takashi R Endo

Gliadins are the most abundant component of the seed storage proteins in cereals and, in combination with glutenins, are important for the bread-making quality of wheat. They are divided into four subfamilies, the α-, β-, γ-, and ω-gliadins, depending on their electrophoresis pattern, chromosomal location, and DNA and protein structures. Using a PCR-based strategy we isolated and sequenced an ω-gliadin sequence. We also determined the chromosomal subarm location of this sequence using wheat aneuploids and deletion lines. The gene is 1858 bp long and contains a coding sequence 1248 bp in length. Like all other gliadin gene families characterized in cereals, the ω-gliadin gene described here had characteristic features including two repeated sequences 300 bp upstream of the start codon. At the DNA level, the gene had a high degree of similarity to the ω-secalin and C-hordein genes of rye and barley, but exhibited much less homology to the α- and β-gliadin gene families. In terms of the deduced amino acid sequence, this gene has about 80 and 70% similarity to the ω-secalin and C-hordein genes, respectively, and possesses all the features reported for other gliadin gene families. The ω-gliadin gene has about 30 repeats of the core consensus sequences PQQPX and XQQPQQX, twice as many as other gliadin gene families. Southern blotting and PCR analysis with aneuploid and deletion lines for the short arm of chromosome 1A showed that the ω-gliadin was located on the distal 25% of the short arm of chromosome 1A. By comparison of PCR and A-PAGE profiles for deletion stocks, its genomic location must be at a different locus from gli-A1a in 'Chinese Spring'.Key words: glutenin, omega gliadin, storage protein, Triticum aestivum, secalin.


2006 ◽  
Vol 96 (S2) ◽  
pp. S95-S102 ◽  
Author(s):  
Jesus F. Crespo ◽  
John M. James ◽  
Consuelo Fernandez-Rodriguez ◽  
Julia Rodriguez

Nuts are a well-defined cause of food allergy, which affect approximately 1 % of the general population in the UK and the USA. There do appear to be differences in the frequency of nut allergy between different countries because of different dietary habits and cooking procedures. For example, in the USA and France, peanuts are one of the most frequent causes of food allergy, but in other countries, it seems to be less common. Genetic factors, in particular, appear to play a role in the development of peanut allergy. While the majority of nut allergens are seed storage proteins, other nut allergens are profilins and pathogenesis-related protein homologues, considered as panallergens because of their widespread distribution in plants. The presence of specific IgE antibodies to several nuts is a common clinical finding, but the clinical relevance of this cross-reactivity is usually limited. Allergic reactions to nuts appear to be particularly severe, sometimes even life-threatening, and fatal reactions following their ingestion have been documented. Food allergy is diagnosed by identifying an underlying immunological mechanism (i.e. allergic testing), and establishing a causal relationship between food ingestion and symptoms (i.e. oral challenges). In natural history investigations carried out in peanut-allergic children, approximately 20 % of the cases outgrew their allergy or developed oral tolerance. The treatment of nut allergies should include patient and family education about avoiding all presentations of the food and the potential for a severe reaction caused by accidental ingestion. Patients and families should be instructed how to recognise early symptoms of an allergic reaction and how to treat severe anaphylaxis promptly.


2014 ◽  
Vol 67 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Akbar Marzooghian ◽  
Mohammad Moghaddam ◽  
Mostafa Valizadeh ◽  
Mohammad Hasan Kooshki

AbstractEvaluation of the genetic diversity present within species is essential for conservation, management and utilization of the genetic resources. The objective of this study was to evaluate genetic variability of 70 common bean genotypes for seed storage proteins, grain morphological characteristics and agronomic traits. Two methods of extracting soluble seed proteins in salt were used.Positive correlations were observed among both seed morphological characters and developmental characters while yield components showed negative correlations with each other. Factor analysis for agronomic and grain morphological traits resulted in three factors were named yield components, seed morphology and phenology, respectively. Most genotypes had lower or medium scores for yield components and phenology factors. Considerable diversity was observed for seed morphology factor among the common bean genotypes.Nei’s diversity coefficient (He= 0.4), effective number of alleles (Ae= 1.69) and number of polymorphic loci (N = 17) indicated larger variation in the extraction method of soluble proteins in low salt (0.2 M NaCl) than high salt (1 M NaCl) condition. Considering that the centers of diversity for common bean are different in seed size, the result of Gst statistics showed that bands with relative mobility of 30, 32, 38 and 40 differentiated two weight groups more than other bands. Furthermore, significant differences were observed between these bands for number of pods per plant and number of seeds per plant.


Sign in / Sign up

Export Citation Format

Share Document