Efficient microtuber production of potato in modified nutrient spray bioreactor system

2015 ◽  
Vol 192 ◽  
pp. 369-374 ◽  
Author(s):  
Md. Zamilur Rahman ◽  
S.M.Shahinul Islam ◽  
A.N. Chowdhury ◽  
Sreeramanan Subramaniam
2011 ◽  
Vol 49 (01) ◽  
Author(s):  
SA Hoffmann ◽  
M Lübberstedt ◽  
U Müller-Vieira ◽  
D Knobeloch ◽  
A Nüssler ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mathias Fink ◽  
Monika Cserjan-Puschmann ◽  
Daniela Reinisch ◽  
Gerald Striedner

AbstractTremendous advancements in cell and protein engineering methodologies and bioinformatics have led to a vast increase in bacterial production clones and recombinant protein variants to be screened and evaluated. Consequently, an urgent need exists for efficient high-throughput (HTP) screening approaches to improve the efficiency in early process development as a basis to speed-up all subsequent steps in the course of process design and engineering. In this study, we selected the BioLector micro-bioreactor (µ-bioreactor) system as an HTP cultivation platform to screen E. coli expression clones producing representative protein candidates for biopharmaceutical applications. We evaluated the extent to which generated clones and condition screening results were transferable and comparable to results from fully controlled bioreactor systems operated in fed-batch mode at moderate or high cell densities. Direct comparison of 22 different production clones showed great transferability. We observed the same growth and expression characteristics, and identical clone rankings except one host-Fab-leader combination. This outcome demonstrates the explanatory power of HTP µ-bioreactor data and the suitability of this platform as a screening tool in upstream development of microbial systems. Fast, reliable, and transferable screening data significantly reduce experiments in fully controlled bioreactor systems and accelerate process development at lower cost.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Takehiro Mukae ◽  
Sho Okumura ◽  
Takuma Watanobe ◽  
Kyoko Yoshii ◽  
Takahiro Tagami ◽  
...  

Increased commercial demand for monoclonal antibodies (mAbs) has resulted in the urgent need to establish efficient production systems. We previously developed a transgenic chicken bioreactor system that effectively produced human cytokines in egg whites using genome-edited transgenic chickens. Here, we describe the application of this system to mAb production. The genes encoding the heavy and light chains of humanized anti-HER2 mAb, linked by a 2A peptide sequence, were integrated into the chicken ovalbumin gene locus using a CRISPR/Cas9 protocol. The knock-in hens produced a fully assembled humanized mAb in their eggs. The mAb expression level in the egg white was 1.4–1.9 mg/mL, as determined by ELISA. Furthermore, the antigen binding affinity of the anti-HER2 mAb obtained was estimated to be equal to that of the therapeutic anti-HER2 mAb (trastuzumab). In addition, antigen-specific binding by the egg white mAb was demonstrated by immunofluorescence against HER2-positive and -negative cells. These results indicate that the chicken bioreactor system can efficiently produce mAbs with antigen binding capacity and can serve as an alternative production system for commercial mAbs.


Sign in / Sign up

Export Citation Format

Share Document