A Carica papaya L. genotype with low leaf chlorophyll concentration copes successfully with soil water stress in the field

2022 ◽  
Vol 293 ◽  
pp. 110722
Author(s):  
Katherine Fraga Ruas ◽  
Danilo Força Baroni ◽  
Guilherme Augusto Rodrigues de Souza ◽  
Wallace de Paula Bernado ◽  
Jessica Sousa Paixão ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 563
Author(s):  
Esther Anokye ◽  
Samuel T. Lowor ◽  
Jerome A. Dogbatse ◽  
Francis K. Padi

With increasing frequency and intensity of dry spells in the cocoa production zones of West Africa, strategies for mitigating impact of water stress on cocoa seedling survival are urgently required. We investigated the effects of applied potassium on biomass accumulation, physiological processes and survival of cocoa varieties subjected to water stress in pot experiments in a gauzehouse facility. Four levels of potassium (0, 1, 2, or 3 g/plant as muriate of potash) were used. Soil water stress reduced plant biomass accumulation (shoot and roots), relative water content (RWC), chlorophyll content and fluorescence. Leaf phenol and proline contents were increased under water stress. Additionally, compared to the well-watered conditions, soils under water stress treatments had higher contents of exchangeable potassium and available phosphorus at the end of the experimental period. Potassium applied under well-watered conditions reduced leaf chlorophyll content and fluorescence and increased leaf electrolyte leakage, but improved the growth and integrity of physiological functions under soil water stress. Potassium addition increased biomass partitioning to roots, improved RWC and leaf membrane stability, and significantly improved cocoa seedling survival under water stress. Under water stress, the variety with the highest seedling mortality accumulated the highest contents of phenol and proline. A significant effect of variety on plant physiological functions was observed. Generally, varieties with PA 7 parentage had higher biomass partitioning to roots and better seedling survival under soil moisture stress. Proportion of biomass partitioned to roots, RWC, chlorophyll fluorescence and leaf electrolyte leakage appear to be the most reliable indicators of cocoa seedling tolerance to drought.


1995 ◽  
Vol 120 (2) ◽  
pp. 283-285 ◽  
Author(s):  
Yan Shi ◽  
D. H. Byrne

A standardized screening procedure for tolerance to bicarbonate-induced Fe chlorosis using a commercial fertilizer mix (Plantex) as the nutrient source, high solution pH (8.5) and 1.5 m m bicarbonate to simulate a calcareous soil situation was used with a 1 vermiculite:1 perlite (v/v) support media, small pots and topping (pinching back the tops of shoots). The tolerance level of peach [Prunus persica (L.) Batsch] rootstock could be assessed by leaf visual-chlorosis ratings and Spad-502 chlorophyll readings instead of extractable leaf-chlorophyll concentration or plant Fe concentration. Although most of the tolerant genotypes had almond [P. amygdalus (Mill.) D.A. Webb] in their parentage, a few peaches (`Swat', NJ672281007) showed high to moderate levels of tolerance.


2014 ◽  
Vol 42 (2) ◽  
pp. 386-391 ◽  
Author(s):  
Meral INCESU ◽  
Berken CIMEN ◽  
Turgut YESILOGLU ◽  
Bilge YILMAZ

Salinity continues to be a major factor in reduced crop productivity and profit in many arid and semiarid regions. Seedlings of Diospyros kaki Thunb. and D. virginiana L. are commonly used as rootstock in persimmon cultivation. In this study we have evaluated the effects of different salinity levels on photosynthetic capacity and plant development of D. kaki and D. virginiana. Salinity was provided by adding 50 mM, 75 mM and 100 mM NaCl to nutrient solution. In order to determine the effects of different salinity levels on plant growth, leaf number, plant height, shoot and root dry mass were recorded. Besides leaf Na, Cl, K and Ca concentrations were determined. Also leaf chlorophyll concentration, chlorophyll fluorescence (Fv’/Fm’) and leaf gas exchange parameters including leaf net photosynthetic rate (PN), stomatal conductance (gS), leaf transpiration rate (E), and CO2 substomatal concentration (Ci) were investigated. Significant decrease of leaf number, shoot length and plant dry mass by increasing salinity levels was observed in both rootstocks. D. virginiana was less affected in terms of plant growth under salinity stress. Leaf chlorophyll concentration reduction was higher in the leaves of D. kaki in comparison to D. virginiana in 100 mM NaCl treatment. By increasing salinity levels PN, gS and E markedly decreased in both rootstocks and D. kaki was more affected from salinity in terms of leaf gas exchange parameters. In addition there was no significant difference but slight decreases were recorded in leaf chlorophyll fluorescences of both rootstocks.


2020 ◽  
Vol 291 ◽  
pp. 108061 ◽  
Author(s):  
Tengcong Jiang ◽  
Zihe Dou ◽  
Jian Liu ◽  
Yujing Gao ◽  
Robert W. Malone ◽  
...  

2009 ◽  
Vol 123 (2) ◽  
pp. 253-257 ◽  
Author(s):  
Zhong Qiang Wang ◽  
Liang Huan Wu ◽  
Sarkar Animesh

Sign in / Sign up

Export Citation Format

Share Document