scholarly journals Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers

2017 ◽  
Vol 586 ◽  
pp. 827-835 ◽  
Author(s):  
Zhi Li ◽  
Xi Chen ◽  
Wenzhao Liu ◽  
Bingcheng Si
2018 ◽  
Vol 73 ◽  
pp. 03025 ◽  
Author(s):  
Thomas Triadi Putranto ◽  
Daniel Eko Aryanto

The impact of land use change will lead to a reduction of the land that is supposed to be for the groundwater recharge area. The area which is previously as a protected area, becoming a cultivated area. Determination of groundwater recharge areas is needed to ensure the availability of groundwater in Purworejo regency. The objective of this study is at determining the suitability of land use for groundwater recharge areas. The method was developed by using spatial analysis tool based on rating and weighting value of some parameters, i.e. rock permeability, rainfall, land use, soil type, slope, and depth of groundwater depth. Results conduct that the groundwater recharge area covers around 42,192 ha. Most of the groundwater recharge areas are located in the protected area, but there are several occupied by cultivated areas.


2020 ◽  
Vol 24 (1) ◽  
pp. 249-267 ◽  
Author(s):  
Cornelia Wilske ◽  
Axel Suckow ◽  
Ulf Mallast ◽  
Christiane Meier ◽  
Silke Merchel ◽  
...  

Abstract. Despite being the main drinking water resource for over 5 million people, the water balance of the Eastern Mountain Aquifer system on the western side of the Dead Sea is poorly understood. The regional aquifer consists of fractured and karstified limestone – aquifers of Cretaceous age, and it can be separated into a Cenomanian aquifer (upper aquifer) and Albian aquifer (lower aquifer). Both aquifers are exposed along the mountain ridge around Jerusalem, which is the main recharge area. From here, the recharged groundwater flows in a highly karstified aquifer system towards the east and discharges in springs in the lower Jordan Valley and Dead Sea region. We investigated the Eastern Mountain Aquifer system for groundwater flow, groundwater age and potential mixtures, and groundwater recharge. We combined 36Cl ∕ Cl, tritium, and the anthropogenic gases SF6, CFC-12 (chlorofluorocarbon) and CFC-11, while using CFC-113 as “dating” tracers to estimate the young water components inside the Eastern Mountain Aquifer system. By application of lumped parameter models, we verified young groundwater components from the last 10 to 30 years and an admixture of a groundwater component older than about 70 years. Concentrations of nitrate, simazine (pesticide), acesulfame K (ACE-K; artificial sweetener) and naproxen (NAP; drug) in the groundwater were further indications of infiltration during the last 30 years. The combination of multiple environmental tracers and lumped parameter modelling helped to understand the groundwater age distribution and to estimate recharge despite scarce data in this very complex hydrogeological setting. Our groundwater recharge rates support groundwater management of this politically difficult area and can be used to inform and calibrate ongoing groundwater flow models.


2019 ◽  
Vol 98 ◽  
pp. 12007
Author(s):  
Tianming Huang ◽  
Baoqiang Ma ◽  
Yin Long ◽  
Zhonghe Pang

In arid and semiarid area, the recharge rate is relatively limited and the unsaturated zone (UZ) is commonly thick. The moisture in the UZ may represent the water infiltrating from precipitation during the past decades to thousands of years. Therefore, the multiple geochemical tracers in soil moisture, including Cl (chloride mass balance), 3H (tritium peak displacement), NO3, 2H, 18O, can be used to estimate diffuse recharge rate and related recharge characteristics. Based on 45 UZ profiles with maximum depth of 62 m in the Ordos Basin in NW China, a typical arid and semiarid area, we has used multiple geochemical tracers to study the following recharge informations: (1) reconstruction of groundwater recharge history, (2) determination of groundwater recharge mechanism, and (3) assessment of impact of vegetation changes on groundwater recharge. The results show that the soil texture (epically the shallow soil), vegetation and precipitation mainly control the recharge rate. This study also found that shallow groundwater in arid and semiarid areas is often not in equilibrium with near-surface boundary conditions. To estimate present recharge information, the UZ must be considered. The whole recharge process from precipitation to groundwater cannot be well understood unless the UZ have been included in arid and semiarid areas.


Sign in / Sign up

Export Citation Format

Share Document