Environment significance and hydrochemical characteristics of supra-permafrost water in the source region of the Yangtze River

2018 ◽  
Vol 644 ◽  
pp. 1141-1151 ◽  
Author(s):  
Li Zong-Jie ◽  
Li Zong-Xing ◽  
Song Ling-Ling ◽  
Ma Jin-Zhu ◽  
Song Yong
Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1342 ◽  
Author(s):  
Zhao ◽  
Li ◽  
Lin ◽  
Guo ◽  
Zhao ◽  
...  

The source region of the Yangtze River (SRYR) is located in the Qinghai-Tibet Plateau, where the climatic conditions and alpine-cold natural conditions are harsh. Field investigations of the hydrochemical characteristics and larva and juvenile fish in rivers of the SRYR were carried out in July 2018 with the aim of obtaining further information on the unique ecological environment status of this plateau area. The results of the present research indicated that majority of the river water quality parameters in the SRYR were in the range of class I to class II, according to the classification of the environmental quality standard for surface water (GB3838-2002) in China. Among 12 kinds of metal ions, the concentrations of four major ions occurred in the following order: Ca > Na > Mg > K. The concentrations of eight heavy metal ions (Fe, Mn, Cu, Zn, Pb, Cd, Cr and As) were all within the class I water range based on GB3838-2002. A total of three species of larval and juvenile fish, i.e., Triplophysa stenura (T. stenura), Schizopygopsis microcephalus Herzenstein (S. microcephalus) and Triplophysa bleekeri (T. bleekeri), were collected from 11 sampling sites. It was found that T. stenura covered the widest distribution range and was the most abundant. The results of principal component analysis and canonical correspondence analysis demonstrated that the distribution of S. microcephalus exhibited a positive response to water temperature, a positive response to K and a negative correlation with water temperature were demonstrated in the distribution of T. stenura. T. bleekeri distribution had a positive response to Cu, but negative responses to total phosphorus and total dissolved solid.


2014 ◽  
Vol 6 (2) ◽  
pp. 124 ◽  
Author(s):  
Chongyi E ◽  
Hongchang Hu ◽  
Hong Xie ◽  
Yongjuan Sun

The study of temperature change and its elevation dependency in the source region of the Yangtze River and Yellow River have been insufficient owing to the lack of adequate observation stations and long-term climatic data. In this study five temperature indices of 32 stations from 1961 to 2007 in and near the source region are used. The 32 stations all have experienced significant warming; the warming amplitudes are higher than the mean warming amplitude of the Qinghai-Tibetan plateau. The warming amplitudes and the numbers of stations showing significant warming trends in mean minimum temperature and extreme minimum temperature are higher than that of the mean maximum temperature and extreme maximum temperature. The elevation dependency of climatic warming and the amount of significant warming stations are not obvious; the influence of human activity and urbanization may be higher. The warming amplitudes of 26 stations above 3000 m tend to be uniform, and there is no significant law at 6 stations below 3000 m. On the contrary, the ratio of stations showing significant warming in minimum temperature above 4000 m is far less than that of the stations below 4000 m.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xin Lai ◽  
Yuanfa Gong ◽  
Sixian Cen ◽  
Hui Tian ◽  
Heng Zhang

Based on runoff data collected at the Zhimenda station, reanalysis data from the National Centers of Environmental Prediction/National Centers of Atmospheric Research (NCEP/NCAR), and observation data from ground stations in China, this study analyzes the characteristics of changes in runoff in the source region of the Yangtze River (SRYR) during the flood season (from July to September), the relationship between runoff and antecedent rainfall, and the impact of the westerly jet (WJ) on rainfall in the coastal zone of the SRYR. The results show the following. The runoff in the SRYR displays a significant interannual and interdecadal variability. The runoff in the SRYR during the flood season is most closely related to 15-day (June 16 to September 15) antecedent rainfall in the coastal zone of the SRYR. In turn, the antecedent rainfall in the coastal zone of the SRYR is mainly affected by the intensity of the simultaneous WJ over a key region (55–85°E, 45–55°N). When the intensity of the WJ over the key region is greater (less) than normal, the jet position moves northward (southward), and the easterly (westerly) wind anomalies over the region to the west of the SRYR become unfavorable (favorable) to the transport of water vapor from high-latitude regions to the SRYR. In addition, the southerly wind over the equatorial region cannot (can) easily advance northward, which is unfavorable (favorable) to the northward transport of water vapor from the low-latitude ocean. Hence, these conditions result in a decrease (increase) in the water vapor content in the SRYR. Furthermore, the convergence (divergence) anomalies in the upper level and the divergence (convergence) anomalies in the lower level result in the descending (ascending) motion over the SRYR. These factors decrease (increase) the rainfall, thereby decreasing (increasing) the runoff in the SRYR during the flood season.


2015 ◽  
Vol 47 (2) ◽  
pp. 442-453 ◽  
Author(s):  
Zhaofei Liu ◽  
Zhijun Yao ◽  
Rui Wang

The primary objective of this study was to quantify the contribution of glacial melt to total runoff in the Gaerqu River catchment, which is located in the source region of the Yangtze River, China. The isotope hydrograph separation method was used to separate glacier melt runoff from total runoff in the catchment. The degree-day method was used to investigate temporal variations in glacial melt runoff. The results showed that the contribution of glacial melt runoff to total runoff was 15.0%. The uncertainty of the separation was ± 3.7% at the confidence level of 95%. Glacial melt runoff was mainly generated in June, July, and August. The runoff coefficient was 0.23 for the catchment. Precipitation-induced runoff constituted 19.9% of the total precipitation, meaning that precipitation loss was >80% across the study period (a hydrological year). The Local Meteoric Water Line (LMWL) of the catchment was fitted as δ2H = 7.75 δ18O + 5.93. This line has a smaller slope and intercept than the Global Meteoric Water Line. The regression-lines for the δ18O and δ2H values of stream water indicated that evaporation was greater over the entire catchment than it was for the upstream region alone.


2020 ◽  
Vol 582 ◽  
pp. 124506 ◽  
Author(s):  
Zongxing Li ◽  
Zongjie Li ◽  
Qi Feng ◽  
Baijuan Zhang ◽  
Juan Gui ◽  
...  

2020 ◽  
Author(s):  
Lingxiao Wang ◽  
Lin Zhao ◽  
Huayun Zhou ◽  
Shibo Liu ◽  
Xiaodong Huang ◽  
...  

<p>Qinghai-Tibet Plateau (QTP) has the largest high-altitude permafrost zone in the middle and low latitudes. Substantial hydrologic changes have been observed in the Yangtze River source region and adjacent areas in the early 21st century. Permafrost on the QTP has undergone degradation under global warming. The ground leveling observation site near Tangula (33°04′N, 91°56′E) located in the degraded alpine meadow indicates that the ground has subsided 50mm since 2011. The contribution of permafrost degradation and loss of ground ice to the hydrologic changes is however still lacking. This study monitors the permafrost changes by applying the Small BAseline Subset InSAR (SBAS-InSAR) technique using C-band Sentinel-1 datasets during 2014-2019. The ground deformation over permafrost terrain is derived in spatial and temporal scale, which reflects the seasonal freeze-thaw cycle in the active layer and long-term thawing of ground ice beneath the active layer. Results show the seasonal thaw displacement exhibits a strong correlation with surficial geology contacts. The ground leveling data is used to validate the ground deformation monitoring results. Then, the ground deformation characteristics are analyzed against the landscape units. Last, the long-term inter-annual displacement value is used to estimate the water equivalent of ground ice melting.</p>


2013 ◽  
Vol 23 (2) ◽  
pp. 208-218 ◽  
Author(s):  
Lin Li ◽  
Hongyan Shen ◽  
Sheng Dai ◽  
Hongmei Li ◽  
Jianshe Xiao

Sign in / Sign up

Export Citation Format

Share Document