A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions

2019 ◽  
Vol 651 ◽  
pp. 475-483 ◽  
Author(s):  
Joanna A. Kamińska
2018 ◽  
Vol 23 ◽  
pp. 00016 ◽  
Author(s):  
Joanna A. Kamińska

Two data mining methods – a random forest and boosted regression trees – were used to model values of roadside air pollution depending on meteorological conditions and traffic flow, using the example of data obtained in the city of Wrocław in the years 2015–2016. Eight explanatory variables – five continuous and three categorical – were considered in the models. A comparison was made of the quality of the fit of the models to empirical data. Commonly used goodness-of-fit measures did not imply a significant preference for either of the methods. Residual analysis was also performed; this showed boosted regression trees to be a more effective method for predicting typical values in the modelling of NO2, NOx and PM2.5, while the random forest method leads to smaller errors when predicting peaks.


2021 ◽  
Author(s):  
Cong Cao

In this paper, we explore the impact of changes in traffic flow on local air pollution under specific meteorological conditions by integrating hourly traffic flow data, air pollution data and meteorological data, using generalized linear regression models and advanced machine learning algorithms: support vector machines and decision trees. The geographical location is Oslo, the capital of Norway, and the time we selected is from February 2020 to September 2020; We also selected 24-hour data for May 11 and 16 of the same year, representing weekday and holiday traffic flow, respectively, as a subset to further explore. Finally, we selected data from July 2020 for robustness testing, and algorithm performance verification.We found that: the maximum traffic flow on holidays is significantly higher than that on weekdays, but the holidays produce less concentration of {NO}_x throughout the month; the peak arrival time of {NO}_x,\ {NO}_2and NO concentrations is later than the peak arrival time of traffic flow. Among them, {NO}_x has a very significant variation, so we choose {NO}_x concentration as an air pollution indicator to measure the effect of traffic flow variation on air pollution; we also find that {NO}_xconcentration is negatively correlated with hourly precipitation, and the variation trend is like that of minimum air temperature. We used multiple imputation methods to interpolate the missing values. The decision tree results yield that when traffic volumes are high (>81%), low temperatures generate more concentrations of {NO}_x than high temperatures (an increase of 3.1%). Higher concentrations of {NO}_x (2.4%) are also generated when traffic volumes are low (no less than 22%) but there is some precipitation ≥ 0.27%.In the evaluation of the prediction accuracy of the machine learning algorithms, the support vector machine has the best prediction performance with high R-squared and small MAE, MSE and RMSE, indicating that the support vector machine has a better explanation for air pollution caused by traffic flow, while the decision tree is the second best, and the generalized linear regression model is the worst.The selected data for July 2020 obtained results consistent with the overall dataset.


2021 ◽  
Vol 10 (12) ◽  
pp. 836
Author(s):  
Jiansheng Wu ◽  
Yun Qian ◽  
Yuan Wang ◽  
Na Wang

During the COVID-19 lockdown in Wuhan, transportation, industrial production and other human activities declined significantly, as did the NO2 concentration. In order to assess the relative contributions of different factors to reductions in air pollutants, we implemented sensitivity experiments by Random Forest (RF) models, with the comparison of the contributions of meteorological conditions, human mobility, and emissions from industry and households between different periods. In addition, we conducted scenario analyses to suggest an appropriate limit for control of human mobility. Different mechanisms for air pollutants were shown in the pre-pandemic, pre-lockdown, lockdown, and post-pandemic periods. Wind speed and the Within-city Migration index, representing intra-city mobility intensity, were excluded from stepwise multiple linear models in the pre-lockdown and lockdown periods. The results of sensitivity experiments show that, in the COVID-19 lockdown period, 73.3% of the reduction can be attributed to decreased human mobility. In the post-pandemic period, meteorological conditions control about 42.2% of the decrease, and emissions from industry and households control 40.0%, while human mobility only contributes 17.8%. The results of the scenario analysis suggest that the priority of restriction should be given to human mobility within the city than other kinds of human mobility. The reduction in the NO2 concentration tends to be smaller when human mobility within the city decreases by more than 70%. A limit of less than 40% on the control of the human mobility can achieve a better effect, especially in cities with severe traffic pollution.


2019 ◽  
Author(s):  
Tuan V. Vu ◽  
Zongbo Shi ◽  
Jing Cheng ◽  
Qiang Zhang ◽  
Kebin He ◽  
...  

Abstract. A five-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessments of this Action Plan is an essential part of the decision-making process to review the efficacy of the Plan and to develop new policies. Both statistical and chemical transport modelling were applied to assess the efficacy of this Action Plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we improved a novel machine learning-based random forest technique to quantify the effectiveness of Beijing's Acton Plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year to year variations in ambient air quality. Further analysis show that the favorable meteorological conditions in winter 2017 contributed to a lower PM2.5 mass concentration (58 μg m−3) than predicted from the random forest model (61 μg m−3), which is higher than the target of the Plan (2017 annual PM2.5 


ICCTP 2009 ◽  
2009 ◽  
Author(s):  
Jianjun Wang ◽  
Chenfeng Xie ◽  
Zhenwen Chang ◽  
Jingjing Zhang

Sign in / Sign up

Export Citation Format

Share Document