Characteristics and mechanism of dimethyl trisulfide formation during sulfide control in sewer by adding various oxidants

2019 ◽  
Vol 673 ◽  
pp. 719-725 ◽  
Author(s):  
Tianfeng Gu ◽  
Peiying Tan ◽  
Yongchao Zhou ◽  
Yiping Zhang ◽  
David Zhu ◽  
...  
2021 ◽  
Vol 84 (3) ◽  
pp. 219-231
Author(s):  
Yu Wang ◽  
Qianru Zhou ◽  
Wei Yang ◽  
Qianzhan Yang ◽  
Xuejing Zhang ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. 974
Author(s):  
Marc-Kevin Zinn ◽  
Marco Singer ◽  
Dirk Bockmühl

Although malodour formation on textiles and in washing machines has been reported to be a very relevant problem in domestic laundry, the processes leading to bad odours have not been studied intensively. In particular, the smell often described as “wet-and-dirty-dustcloth-like malodour” had not been reproduced previously. We developed a lab model based on a bacterial mixture of Micrococcus luteus, Staphylococcus hominis, and Corynebacterium jeikeium, which can produce this odour type and which might allow the detailed investigation of this problem and the development of counteractions. The model uses bacterial strains that have been isolated from malodourous textiles. We could also show that the three volatile compounds dimethyl disulfide, dimethyl trisulfide, and indole contribute considerably to the “wet-fabric-like” malodour. These substances were not only found to be formed in the malodour model but have already been identified in the literature as relevant malodourous substances.


2021 ◽  
pp. 1-7
Author(s):  
Tara B. Hendry-Hofer ◽  
Carter C. Severance ◽  
Subrata Bhadra ◽  
Patrick C. Ng ◽  
Kirsten Soules ◽  
...  

ACS Omega ◽  
2020 ◽  
Vol 5 (42) ◽  
pp. 27171-27179 ◽  
Author(s):  
Indika K. Warnakula ◽  
Afshin Ebrahimpour ◽  
Sun Yi Li ◽  
Ramesha D. Gaspe Ralalage ◽  
Chathuranga C. Hewa-Rahinduwage ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Deepthika De Silva ◽  
Steven Lee ◽  
Anna Duke ◽  
Siva Angalakurthi ◽  
Ching-En Chou ◽  
...  

These studies represent the first report on the intravascular residence time determinations for the cyanide antidote dimethyl trisulfide (DMTS) in a rat model by using high performance liquid chromatography coupled with ultraviolet absorption spectroscopy (HPLC-UV). The newly developed sample preparation included liquid-liquid extraction by cyclohexanone. The calibration curves showed a linear response for DMTS concentrations between 0.010 and 0.30 mg/mL withR2= 0.9994. The limit of detection for DMTS via this extraction method was 0.010 mg/mL, and the limit of quantitation was 0.034 mg/mL. Thus this calibration curve provided a tool for determining DMTS in the range between 0.04 and 0.30 mg/mL. Rats were given 20 mg/kg DMTS dose (in 15% Polysorbate 80) intravenously, and blood samples were taken 15, 60, 90, 120, and 240 min after DMTS injections. The data points were plotted as DMTS concentration in RBCs versus time, and the intravascular residence time was determined graphically. The results indicated a half-life of 36 min in a rat model, suggesting that the circulation time is long enough to provide a reasonable time interval for cyanide antagonism.


2003 ◽  
Vol 47 (12) ◽  
pp. 183-189 ◽  
Author(s):  
S.K. Khanal ◽  
C. Shang ◽  
J.-C. Huang

In this study, oxidation-reduction potential (ORP) was used as a controlling parameter to regulate oxygen dosing to the recycled biogas for online sulfide oxidation in an upflow anaerobic filter (UAF) system. The UAF was operated with a constant influent COD of 18,000 mg/L, but with different influent sulfates of 1000, 3000 and 6000 mg/L. The reactor was initially operated under a natural ORP of -290 mV (without oxygen injection), and was then followed by oxygenation to raise its ORP by 25 mV above the natural level for each influent sulfate condition. At 6,000 mg/L sulfate without oxygen injection, the dissolved sulfide reached 733.8 mg S/L with a corresponding free sulfide of 250.3 mg S/L, thus showing a considerable inhibition to methanogens. Upon oxygenation to raise its ORP to -265 mV (i.e., a 25 mV increase), the dissolved sulfide was reduced by more than 98.5% with a concomitant 45.9% increase of the methane yield. Under lower influent sulfate levels of 1,000 and 3,000 mg/L, the levels of sulfides produced, even under the natural ORP, did not impose any noticeable toxicity to methanogens. Upon oxygenation to raise the ORP by +25 mV, the corresponding methane yields were actually reduced by 15.5% and 6.2%, respectively. However, such reductions were not due to the adverse impact of the elevated ORP; instead, they were due to a diversion of some organic carbon to support the facultative activities inside the reactor as a result of excessive oxygenation. In other words, to achieve satisfactory sulfide oxidation for the lower influent sulfate conditions, it was not necessary to raise the ORP by as much as +25 mV. The ORP increase actually needed depended on both the influent sulfate and also actual wastewater characteristics. This study had proved that the ORP controlled oxygenation was reliable for achieving consistent online sulfide control.


2010 ◽  
Vol 101 (1) ◽  
pp. 89-97 ◽  
Author(s):  
R.S. Mann ◽  
R.L. Rouseff ◽  
J.M. Smoot ◽  
W.S. Castle ◽  
L.L. Stelinski

AbstractThe Asian citrus psyllid, Diaphorina citri Kuwayama, vectors Candidatus Liberibacter asiaticus (Las) and Candidatus Liberibacter americanus (Lam), the presumed causal agents of huanglongbing. D. citri generally rely on olfaction and vision for detection of host cues. Plant volatiles from Allium spp. (Alliaceae) are known to repel several arthropod species. We examined the effect of garlic chive (A. tuberosum Rottl.) and wild onion (A. canadense L.) volatiles on D. citri behaviour in a two-port divided T-olfactometer. Citrus leaf volatiles attracted significantly more D. citri adults than clean air. Volatiles from crushed garlic chive leaves, garlic chive essential oil, garlic chive plants, wild onion plants and crushed wild onion leaves all repelled D. citri adults when compared with clean air, with the first two being significantly more repellent than the others. However, when tested with citrus volatiles, only crushed garlic chive leaves and garlic chive essential oil were repellent, and crushed wild onions leaves were not.Analysis of the headspace components of crushed garlic chive leaves and garlic chive essential oil by gas chromatography-mass spectrometry revealed that monosulfides, disulfides and trisulfides were the primary sulfur volatiles present. In general, trisulfides (dimethyl trisulfide) inhibited the response of D. citri to citrus volatiles more than disulfides (dimethyl disulfide, allyl methyl disulfide, allyl disulfide). Monosulfides did not affect the behaviour of D. citri adults. A blend of dimethyl trisulfide and dimethyl disulfide in 1:1 ratio showed an additive effect on inhibition of D. citri response to citrus volatiles. The plant volatiles from Allium spp. did not affect the behaviour of the D. citri ecto-parasitoid Tamarixia radiata (Waterston). Thus, Allium spp. or the tri- and di-sulphides could be integrated into management programmes for D. citri without affecting natural enemies.


2018 ◽  
Vol 677 ◽  
pp. 186-192 ◽  
Author(s):  
Isao Nakamura ◽  
Haruno Murayama ◽  
Makoto Tokunaga ◽  
Mitsutaka Okumura ◽  
Tadahiro Fujitani

Sign in / Sign up

Export Citation Format

Share Document