scholarly journals Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada

2019 ◽  
Vol 678 ◽  
pp. 801-812 ◽  
Author(s):  
Karista E. Hudelson ◽  
Derek C.G. Muir ◽  
Paul E. Drevnick ◽  
Günter Köck ◽  
Deborah Iqaluk ◽  
...  
1994 ◽  
Vol 51 (1) ◽  
pp. 209-225 ◽  
Author(s):  
Lionel Johnson

Previous research indicated that fish populations in arctic lakes maintain a constant size distribution and abundance in the face of the environmental variability experienced over their recent history. Such stability was tested over 15 seasons in Little Nauyuk and Gavia lakes (Northwest Territories) which contained previously undisturbed populations of Arctic char (Salvelinus alpinus). Initially, the length–frequency distribution of Arctic char in Little Nauyuk Lake was bell shaped, and in Gavia Lake, it could be described by a negative logarithmic expression. Initial sampling of Gavia Lake removed the largest fish, allowing a well-defined mode to develop (cf. Little Nauyuk Lake). In both lakes the modal value remained constant throughout the exploitation phase. When fishing ceased the populations returned to their original state without evident oscillation. The stable state of the dominant population is considered to be one of "least dissipation". It is hypothesized that ecosystem structure depends on countervailing forces, one tending to decelerate energy flow through the ecosystem and the second tending to accelerate it. For ecosystems to exist, the tendency to decelerate energy flow must dominate system behaviour over ecological time. An ecosystem is regarded as a hemeorhetic system, stability seeking through the stabilization of energy flows.


1978 ◽  
Vol 56 (2) ◽  
pp. 365-368 ◽  
Author(s):  
M. Beverley-Burton

Seven species of parasitic metazoans were found in 71 arctic char (Salvelinus alpinus L.) taken in Char Lake, Cornwallis Island, N.W.T., Canada (74°42′ N, 94°50′ W): Tetraonchus alaskensis (Monogenea); Diphyllobothrium sp. (plerocercoids), Eubothrium salvelini, Eubothrium sp., and Proteocephalus longicollis (Cestoidea); Cystidicola cristivomeri (Nematoda) and Salmincola edwardsii (Crustacea: Copepoda). Except for S. edwardsii these reports, from a population of S. alpinus which is confined to fresh water, constitute new northerly distribution records for North America. Reports of P. longicollis and C. cristivomeri from S. alpinus in Canada have not been published previously.


1995 ◽  
Vol 52 (6) ◽  
pp. 1195-1201 ◽  
Author(s):  
Keith A. Hobson ◽  
Harold E. Welch

Stable-nitrogen (15N/14N) isotope ratios (from 2.1‰ in moss to 14.5‰ in Arctic char, Salvelinus alpinus), showed enrichment with trophic level in the food web of Char Lake, Northwest Territories, and may be used to infer trophic position. The average 15N enrichment of 1.5‰ between moss or algae and invertebrates suggests input to the food web of isotopically lighter nitrogen than that measured for these sources of primary production. Stable-carbon (13C/12C) isotope ratios differed between moss and algae by almost 10‰ and indicate that carbon in the Char Lake food web is derived from a blend of these sources of primary production. Arctic char δ15N values for muscle tissue were positively correlated with fork length and clustered into three distinct groups: small fish (1–3 cm, mean δ15N = 5.7‰), which possibly consumed more benthic particles than previously assumed; intermediate-size fish (10–35 cm, mean δ15N = 10‰), which likely depended on larval char as well as their primary zooplankton and chironomid prey; and larger Arctic char, which showed a mean stepwise increase in δ15N of 3.7‰. This suggests that complete cannibalism in this population generally occurs abruptly and is exercised by a relatively small number of large individuals.


2010 ◽  
Vol 67 (5) ◽  
pp. 842-853 ◽  
Author(s):  
Heidi K. Swanson ◽  
Karen A. Kidd ◽  
John A. Babaluk ◽  
Rick J. Wastle ◽  
Panseok P. Yang ◽  
...  

In the family Salmonidae, lake trout ( Salvelinus namaycush ) are considered the least tolerant of salt water. There are, however, sporadic reports of lake trout in coastal, brackish habitats in the Canadian Arctic. Otolith microchemistry analyses conducted on lake trout and Arctic char ( Salvelinus alpinus ) from four Arctic lakes in the West Kitikmeot region of Nunavut, Canada, revealed that 37 of 135 (27%) lake trout made annual marine migrations. Anadromous lake trout were in significantly better condition (K = 1.17) and had significantly higher C:N ratios (3.71) than resident lake trout (K = 1.05 and C:N = 3.34). Anadromous lake trout also had significantly higher δ15N (mean = 16.4‰), δ13C (mean = –22.3‰), and δ34S (mean = 13.43‰) isotope ratios than resident lake trout (means = 12.84‰, –26.21‰, and 1.93‰ for δ15N, δ13C, and δ34S, respectively); results were similar for Arctic char and agree with results from previous studies. Mean age of first migration for lake trout was 13 years, which was significantly older than that for Arctic char (5 years). This could be a reflection of size-dependent salinity tolerance in lake trout, but further research is required. These are the first detailed scientific data documenting anadromy in lake trout.


2016 ◽  
Vol 73 (9) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jean-Sébastien Moore ◽  
Les N. Harris ◽  
Steven T. Kessel ◽  
Louis Bernatchez ◽  
Ross F. Tallman ◽  
...  

We used an array of fixed acoustic receivers (N = 42) to track the summer marine movements of 121 anadromous Arctic char (Salvelinus alpinus) equipped with acoustic transmitters at three locations in the Cambridge Bay region, where commercial and subsistence fisheries target the species. The timing of transitions between salt and fresh water was influenced by the putative river of origin of tagged individuals, but not by their size or sex. Females, however, were more likely to remain proximate to rivers where they were tagged throughout the summer. A majority of fish migrated west from their rivers of origin, primarily moving between estuarine environments. Individuals occupied estuaries for several days between bouts of marine movement, and these periods of residency coincided with spring tides in some estuaries. We also recorded increased numbers of detections on receivers located less than 1.5 km from the coast, indicating a preference for nearshore habitats. Finally, we report evidence of extensive stock mixing throughout the summer, including at known fishing locations and periods, a finding with implications for fisheries management.


2011 ◽  
Vol 89 (1) ◽  
pp. 19-30 ◽  
Author(s):  
J. H. Arbour ◽  
D. C. Hardie ◽  
J. A. Hutchings

Multivariate morphometric analyses were used to examine variation in head, body, and fin shape between two sympatric morphotypes of Arctic char ( Salvelinus alpinus (L., 1758)) from Lake Hazen, Ellesmere Island, Nunavut, Canada. Population structure of the Lake Hazen Arctic char was examined using five microsatellite loci. The “small” morph was found to have a larger (primarily deeper) head, larger and more elongate fins, and a deeper lateral profile than the “large” morph. The morphs also differed in allometric growth patterns. The large and small morphs do not appear to represent genetically distinct populations. The head morphology of the Lake Hazen small and large morphs exhibited similarities to benthic and pelagic morphs (respectively) from other lakes. We hypothesize that the large morph may be adapted to high-efficiency swimming and that the small morph may be adapted to low-efficiency, high-acceleration swimming. Such functional trade-offs are not uncommon among fish specializing in dispersed or mobile prey (fish and plankton) and benthic prey, respectively. The lack of apparent genetic differentiation between the morphs may suggest that the morphological differences result, to some extent, from phenotypic plasticity. Based on these results and previous analyses, it seems reasonable to conclude that Lake Hazen Arctic char represent a resource polymorphism.


1973 ◽  
Vol 30 (6) ◽  
pp. 717-723 ◽  
Author(s):  
G. F. Holeton

The routine of resting oxygen consumption of Arctic char (Salvelinus alpinus) from a high arctic lake (74°42′N) was measured at 2 (acclimated) and 6 C (unacclimated). The oxygen uptake versus wet weight relation at 2 C was: Log O2 uptake = 0.7316 Log weight – 1.0944. Oxygen uptake was low, not showing any evidence of "cold adaptation," and was comparable to projections of oxygen uptake versus temperature relations of other salmonid fish from lower latitudes.The short term metabolic response to a rise in temperature of 4 C was independent of body size except with fish with yolk sacs and weighing less than 0.125 g.


2018 ◽  
Vol 130 (1) ◽  
pp. 71-76
Author(s):  
E Lewisch ◽  
T Frank ◽  
H Soliman ◽  
O Schachner ◽  
A Friedl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document