scholarly journals Shoot and root biomass production in semi-arid shrublands exposed to long-term experimental N input

2021 ◽  
Vol 754 ◽  
pp. 142204
Author(s):  
George L. Vourlitis ◽  
Jeff Jaureguy ◽  
Leticia Marin ◽  
Charlton Rodriguez
2018 ◽  
Vol 69 (4) ◽  
pp. 249-255
Author(s):  
Aliu Sali ◽  
Dukagjin Zeka ◽  
Shukri Fetahu ◽  
Imer Rusinovci ◽  
Hans-Peter Kaul

Summary The objective of this work was to investigate the effect of selenium (Se) on the biomass production and the contents of photosynthetically active pigments. The pot experiment included two maize genotypes: hybrid 408BC originating from Croatia and a local maize population from Kosovo. The doses of Se applied were 0, 1.30, 6.57, 13, and 26 mg kg−1. The lowest Se dose (1.30 mg Se kg−1) had a positive effect on shoot and root biomass production as well as on the contents of chlorophyll b (Chl-b), total chlorophyll, and carotenoids (just for the hybrid). Chlorophyll a (Chl-a) was reduced with increasing Se doses, whereas chlorophyll b (Chl-b) and total chlorophyll further increased with medium Se doses. The highest Se dose strongly reduced biomass and the contents of photosynthetically active pigments. Chl-a and carotenoids positively correlated with shoot (for both genotypes) and root (for the hybrid) biomass, whereas no correlation was observed between Chl-b and biomass. Low amounts of Se application are favorable for biomass production and chlorophyll and carotenoids contents, whereas high amounts of Se application negatively affect both.


2019 ◽  
Vol 128 ◽  
pp. 105323 ◽  
Author(s):  
Xi Liang ◽  
John E. Erickson ◽  
Maria L. Silveira ◽  
Lynn E. Sollenberger ◽  
Diane L. Rowland ◽  
...  

2021 ◽  
Author(s):  
Cheyenne Lei ◽  
Michael Abraha ◽  
Jiquan Chen ◽  
Yahn-Jauh Su

Abstract Aims Long-term determination of root biomass production upon land use conversion to biofuel crops is rare. To assess land-use legacy influences on belowground biomass accumulation, we converted 22-year-old Conservation Reserve Program (CRP) grasslands and 50+-year-old agricultural (AGR) lands to corn (C), switchgrass (Sw) and restored prairie (Pr) biofuel crops. We maintained one CRP grassland as a reference (Ref). We hypothesized that land use history and crop type have significant effects on root density, with perennial crops on CRP grasslands having a higher root biomass productivity, while corn grown on former agricultural lands produce the lowest root biomass. Methods The ingrowth core method was used to determine in situ ingrowth root biomass, alongside measurements of aboveground net primary productivity (ANPP). Ancillary measurements, including air temperature, growing season length, and precipitation were used to examine their influences on root biomass production. Important Findings Root biomass productivity was the highest in unconverted CRP grassland (1716 g m -2 yr -1), and lowest in corn fields (526 g m -2 yr -1). All perennial sites converted from CRP and AGR lands had lower root biomass and ANPP in the first year of planting but peaked in 2011 for switchgrass and a year later for restored prairies. Ecosystem stability was higher in restored prairies (AGR-Pr: 4.3 ± 0.11; CRP-Pr: 4.1 ± 0.10), with all monocultures exhibiting a lower stability. Root biomass production was positively related to ANPP (R  2 = 0.40). Overall, attention should be given to root biomass accumulation in large-scale biofuel production as it is a major source of carbon sequestration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xin Song ◽  
Chao Fang ◽  
Zi-Qiang Yuan ◽  
Feng-Min Li

Land use patterns and vegetation coverage in semi-arid areas of the Loess Plateau have undergone great changes due to the implementation of the “Grain for Green” project. The introduction of legume pasture species, such as alfalfa (Medicago sativa L.) and sweet clover (Melilotus officinalis L.), is one of the most efficient methods of vegetation restoration and reconstruction in this region. However, there is a need for an effective assessment of the root system distribution and its interaction with soil after long-term introduction. An experiment involving the introduction of alfalfa and sweet clover on abandoned farmlands was initiated in 2003 to assess the long-term effects. After 17 years, root and soil samples at depths of 0–20 and 20–60 cm were collected to characterize the root biomass, root carbon (C), nitrogen (N), and phosphorus (P), soil microbial biomass carbon (MBC) and nitrogen (MBN), soil organic carbon (SOC), and soil N and P. The results showed that the root biomass density of alfalfa in the 0–20 and 20–60 cm layers (63.72 and 12.27 kg m–3, respectively) were significantly higher than for sweet clover (37.43 and 8.97 kg m–3, respectively) and under natural abandonment (38.92 and 9.73 kg m–3, respectively). The SOC, total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), nitrate-nitrogen (NO3–-N), MBC and MBN in the 0–20 and 20–60 cm layers were higher after alfalfa introduction compared with sweet clover introduction and natural abandonment, although the ammonia-nitrogen (NH4+-N) concentration in the 0–20 cm layer was lower. There were significantly positive correlations between root biomass density and both soil nutrients and microbial biomass, while there was a negative correlation between the soil NH4+-N and root biomass density. These results indicate that alfalfa root growth improved soil organic matter accumulation and nutrient mineralization. The accumulation and mineralization of soil nutrients also guaranteed root and microorganism growth. Therefore, it was concluded that alfalfa introduction will promote soil nutrients immobilization and mineralization and may enable sustainable land use in the semi-arid region of the Loess Plateau, China.


2010 ◽  
Vol 59 (1) ◽  
pp. 175-184
Author(s):  
B. Biró ◽  
A. Füzy ◽  
K. Posta

A pot experiment was designed to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) on barley ( Hordeum vulgare L.) host plant. Soils of the pots were collected from a long-term field microelement loading experiment on calcareous chernozem soil twelve years after 13 heavy metals (Al, As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sr and Zn) were applied once in four doses (0, 30, 90 and 270 mg element·kg -1 d.w.). The biomass production and element accumulation of the host plant, the various colonization values of the arbuscular mycorrhiza fungi (AMF) – such as colonization intensity (M %), arbusculum richness (A %) in the root system and the sporulation intensity (g -1 dry soil) in the rhizosphere – were measured. When considering the twelve-year adaptation process of the AM fungal populations at the various metal loads, a relatively balanced inside mycorrhiza colonization was found, suggesting the potentials for the selection of tolerant fungi in metal contaminated soils. The balanced infection intensity (M %) of the AM fungi and their common strategies with the host plant have resulted a nonsignificant shoot and root biomass production of barley in general. Mycorrhiza sporulation in the root system proved to be much variable and indicated the toxicity of metals and metal rates. Cd, Pb and Sr elements significantly reduced spore numbers, while a value of 34 spores·g -1 soil was counted in the case of Ni in comparison to the control’s 22 spores·g -1 soil value. Stress-defending strategies of the fungal–plant symbiosis, such as the increased arbusculum richness (A %) could be established for the Hg and Pb rates. In the case of Cd an increased root biomass production became a tool for stress alleviation and reduced the metal allocation towards the shoots. Mycorrhiza fungi are part of the common plant–microbe interactions and appropriate defending mechanisms in metal contaminated soils.


2005 ◽  
Vol 33 (1) ◽  
pp. 251-254 ◽  
Author(s):  
Éva Lehoczky ◽  
András Kismányoky ◽  
Tamás Kismányoky

Sign in / Sign up

Export Citation Format

Share Document