scholarly journals Selenium supply affects chlorophyll concentration and biomass production of maize (Zea mays L.)

2018 ◽  
Vol 69 (4) ◽  
pp. 249-255
Author(s):  
Aliu Sali ◽  
Dukagjin Zeka ◽  
Shukri Fetahu ◽  
Imer Rusinovci ◽  
Hans-Peter Kaul

Summary The objective of this work was to investigate the effect of selenium (Se) on the biomass production and the contents of photosynthetically active pigments. The pot experiment included two maize genotypes: hybrid 408BC originating from Croatia and a local maize population from Kosovo. The doses of Se applied were 0, 1.30, 6.57, 13, and 26 mg kg−1. The lowest Se dose (1.30 mg Se kg−1) had a positive effect on shoot and root biomass production as well as on the contents of chlorophyll b (Chl-b), total chlorophyll, and carotenoids (just for the hybrid). Chlorophyll a (Chl-a) was reduced with increasing Se doses, whereas chlorophyll b (Chl-b) and total chlorophyll further increased with medium Se doses. The highest Se dose strongly reduced biomass and the contents of photosynthetically active pigments. Chl-a and carotenoids positively correlated with shoot (for both genotypes) and root (for the hybrid) biomass, whereas no correlation was observed between Chl-b and biomass. Low amounts of Se application are favorable for biomass production and chlorophyll and carotenoids contents, whereas high amounts of Se application negatively affect both.

2018 ◽  
Vol 15 (16) ◽  
pp. 5249-5269 ◽  
Author(s):  
Cécile Dupouy ◽  
Robert Frouin ◽  
Marc Tedetti ◽  
Morgane Maillard ◽  
Martine Rodier ◽  
...  

Abstract. We assessed the influence of the marine diazotrophic cyanobacterium Trichodesmium on the bio-optical properties of western tropical South Pacific (WTSP) waters (18–22∘ S, 160∘ E–160∘ W) during the February–March 2015 OUTPACE cruise. We performed measurements of backscattering and absorption coefficients, irradiance, and radiance in the euphotic zone with a Satlantic MicroPro free-fall profiler and took Underwater Vision Profiler 5 (UPV5) pictures for counting the largest Trichodesmium spp. colonies. Pigment concentrations were determined by fluorimetry and high-performance liquid chromatography and picoplankton abundance by flow cytometry. Trichome concentration was estimated from pigment algorithms and validated by surface visual counts. The abundance of large colonies counted by the UVP5 (maximum 7093 colonies m−3) was well correlated to the trichome concentrations (maximum 2093 trichomes L−1) with an aggregation factor of 600. In the Melanesian archipelago, a maximum of 4715 trichomes L−1 was enumerated in pump samples (3.2 m) at 20∘ S, 167 30∘ E. High Trichodesmium abundance was always associated with absorption peaks of mycosporine-like amino acids (330, 360 nm) and high particulate backscattering, but not with high Chl a fluorescence or blue particulate absorption (440 nm). Along the west-to-east transect, Trichodesmium together with Prochlorococcus represented the major part of total chlorophyll concentration; the contribution of other groups were relatively small or negligible. The Trichodesmium contribution to total chlorophyll concentration was the highest in the Melanesian archipelago around New Caledonia and Vanuatu (60 %), progressively decreased to the vicinity of the islands of Fiji (30 %), and reached a minimum in the South Pacific Gyre where Prochlorococcus dominated chlorophyll concentration. The contribution of Trichodesmium to zeaxanthin was respectively 50, 40 and 20 % for these regions. During the OUTPACE cruise, the relationship between normalized water-leaving radiance (nLw) in the ultraviolet and visible and chlorophyll concentration was similar to that found during the BIOSOPE cruise in the eastern tropical Pacific. Principal component analysis (PCA) of OUTPACE data showed that nLw at 305, 325, 340, 380, 412 and 440 nm was strongly correlated to chlorophyll and zeaxanthin, while nLw at 490 and 565 nm exhibited lower correlations. These results, as well as differences in the PCA of BIOSOPE data, indicated that nLw variability in the greenish blue and yellowish green during OUTPACE was influenced by other variables associated with Trichodesmium presence, such as backscattering coefficient, phycoerythrin fluorescence and/or zeaxanthin absorption, suggesting that Trichodesmium detection should involve examination of nLw in this spectral domain.


2018 ◽  
Vol 29 (2) ◽  
pp. 251
Author(s):  
Alan Álvarez-Holguín ◽  
Carlos Raúl Morales-Nieto ◽  
Raúl Corrales-Lerma ◽  
Carlos Hugo Avendaño-Arrazate ◽  
Héctor Oswaldo Rubio-Arias ◽  
...  

The stomatal characteristics and chlorophyll concentration are some of the main parameters, to determine plant productivity. The objective of the present study was to characterize the stomatal density and distribution to estimate the chlorophyll concentration and evaluate their effect on the biomass production of sideoatsgrama[Bouteloua curtipendula (Michx.) Torr.] genotypes. The experiment was performed from May to July 2015 under greenhouse conditions, at- the School of Animal Sciences and Ecology of the Autonomous University of Chihuahua, Mexico. Three commercial varieties were studied: El Reno, Niner, Vaughn and two native genotypes: E-689 and E-592 of side-oats grama. The variables evaluated were chlorophyll concentration index (CCI), stomatal density (SD), trichome density (TD), stomatal index (SI), and stomatal area (SA). These variables were related to biomass production (BP) applying regression analysis. SD and SI showed a negative effect on BP, while SA and CCI showed a positive effect. The genotype E-689 showed the lowest (p<0.05) SD and SI, with values from 152.7 to 275 stomatal/μm2 and from 13.41 to 16.03%, respectively. In addition, it also presented the highest (p<0.05) SA and BP, with values from 186.7 to 361.7 μm2 and 13.5 to 30.3 g, respectively. In conclusion, genotypes of side-oats grama with lower stomatal density and stomatal index and higher stomatal area and chlorophyll concentration index could produce higher amounts of biomass.


2021 ◽  
Vol 754 ◽  
pp. 142204
Author(s):  
George L. Vourlitis ◽  
Jeff Jaureguy ◽  
Leticia Marin ◽  
Charlton Rodriguez

2019 ◽  
Vol 128 ◽  
pp. 105323 ◽  
Author(s):  
Xi Liang ◽  
John E. Erickson ◽  
Maria L. Silveira ◽  
Lynn E. Sollenberger ◽  
Diane L. Rowland ◽  
...  

2021 ◽  
Author(s):  
Irene Ruano ◽  
Celia Herrero ◽  
Felipe Bravo

Abstract BackgroundForest resilience should be improved to promote species adaptation and ensure the future of forests. Carbon stock is considered an indicator of resilience, so it is necessary to determine forest carbon stocks and how to improve them through forest management. The main objective of this study was to analyse biomass production and distribution among the components of four-year-old Pinus pinaster and Pinus halepensis trees. Young trees from a Nelder wheel experimental site were harvested and analysed. The effect of density could be included in the biomass analysis thanks to the Nelder wheel design. We tested densities from 1000 to 80000 seedlings/ha and analysed biomass by fitting different equations: (i) linear regressions to analyse biomass production; (ii) Dirichlet regressions to estimate the biomass proportions of each component and (iii) allometric equations to predict the biomass content of each component.ResultsResults from this innovative approach showed that density was a significant factor for Pinus halepensis. We observed a general increase of total biomass at lower densities and this positive effect increased root biomass proportion at the expense of aboveground biomass. Also, a new set of equations was developed for estimating above- and below-ground biomass in young Pinus pinaster and Pinus halepensis trees.Conclusionswe note the importance of belowground biomass and its value in total biomass production (approximately 20% of total biomass for both species). The effect of density on biomass production was only significant for Pinus halepensis, but the effect of density would have been different if root biomass had not been considered in the present study. Lower densities increased root biomass proportion at the expense of aboveground biomass. Currently, this positive effect is especially important in promoting management to improve tree resilience.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 943
Author(s):  
Katri Nissinen ◽  
Virpi Virjamo ◽  
Antti Kilpeläinen ◽  
Veli-Pekka Ikonen ◽  
Laura Pikkarainen ◽  
...  

We studied the growth responses of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and silver birch (Betula pendula Roth) seedlings to simulated climate warming of an average of 1.3 °C over the growing season in a controlled field experiment in central Finland. We had six replicate plots for elevated and ambient temperature for each tree species. The warming treatment lasted for the conifers for three growing seasons and for the birch two growing seasons. We measured the height and diameter growth of all the seedlings weekly during the growing season. The shoot and root biomass and their ratios were measured annually in one-third of seedlings harvested from each plot in autumn. After two growing seasons, the height, diameter and shoot biomass were 45%, 19% and 41% larger in silver birch seedlings under the warming treatment, but the root biomass was clearly less affected. After three growing seasons, the height, diameter, shoot and root biomass were under a warming treatment 39, 47, 189 and 113% greater in Scots pine, but the root:shoot ratio 29% lower, respectively. The corresponding responses of Norway spruce to warming were clearly smaller (e.g., shoot biomass 46% higher under a warming treatment). As a comparison, the relative response of height growth in silver birch was after two growing seasons equal to that measured in Scots pine after three growing seasons. Based on our findings, especially silver birch seedlings, but also Scots pine seedlings benefitted from warming, which should be taken into account in forest regeneration in the future.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 127
Author(s):  
Erik Jeppesen ◽  
Joachim Audet ◽  
Thomas A. Davidson ◽  
Érika M. Neif ◽  
Yu Cao ◽  
...  

Global changes (e.g., warming and population growth) affect nutrient loadings and temperatures, but global warming also results in more frequent extreme events, such as heat waves. Using data from the world’s longest-running shallow lake experimental mesocosm facility, we studied the effects of different levels of nutrient loadings combined with varying temperatures, which also included a simulated 1-month summer heat wave (HW), on nutrient and oxygen concentrations, gross ecosystem primary production (GPP), ecosystem respiration (ER), net ecosystem production (NEP) and bacterioplankton production (BACPR). The mesocosms had two nutrient levels (high (HN) and low (LN)) combined with three different temperatures according to the IPCC 2007 warming scenarios (unheated, A2 and A2 + 50%) that were applied for 11 years prior to the present experiment. The simulated HW consisted of 5 °C extra temperature increases only in the A2 and A2 + 50% treatments applied from 1 July to 1 August 2014. Linear mixed effect modeling revealed a strong effect of nutrient treatment on the concentration of chlorophyll a (Chl-a), on various forms of phosphorus and nitrogen as well as on oxygen concentration and oxygen percentage (24 h means). Applying the full dataset, we also found a significant positive effect of nutrient loading on GPP, ER, NEP and BACPR, and of temperature on ER and BACPR. The HW had a significant positive effect on GPP and ER. When dividing the data into LN and HN, temperature also had a significant positive effect on Chl-a in LN and on orthophosphate in HN. Linear mixed models revealed differential effects of nutrients, Chl-a and macrophyte abundance (PVI) on the metabolism variables, with PVI being particularly important in the LN mesocosms. All metabolism variables also responded strongly to a cooling-low irradiance event in the middle of the HW, resulting in a severe drop in oxygen concentrations, not least in the HN heated mesocosms. Our results demonstrate strong effects of nutrients as well as an overall rapid response in oxygen metabolism and BACPR to changes in temperature, including HWs, making them sensitive ecosystem indicators of climate warming.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1004
Author(s):  
John Lobulu ◽  
Hussein Shimelis ◽  
Mark D. Laing ◽  
Arnold Angelo Mushongi ◽  
Admire Isaac Tichafa Shayanowako

Striga species cause significant yield loss in maize varying from 20 to 100%. The aim of the present study was to screen and identify maize genotypes with partial resistance to S. hermonthica (Sh) and S. asiatica (Sa) and compatible with Fusarium oxysporum f. sp. strigae (FOS), a biocontrol agent. Fifty-six maize genotypes were evaluated for resistance to Sh and Sa, and FOS compatibility. Results showed that FOS treatment significantly (p < 0.001) enhanced Striga management compared to the untreated control under both Sh and Sa infestations. The mean grain yield was reduced by 19.13% in FOS-untreated genotypes compared with a loss of 13.94% in the same genotypes treated with FOS under Sh infestation. Likewise, under Sa infestation, FOS-treated genotypes had a mean grain yield reduction of 18% while untreated genotypes had a mean loss of 21.4% compared to the control treatment. Overall, based on Striga emergence count, Striga host damage rating, grain yield and FOS compatibility, under Sh and Sa infestations, 23 maize genotypes carrying farmer preferred traits were identified. The genotypes are useful genetic materials in the development of Striga-resistant cultivars in Tanzania and related agro-ecologies.


Author(s):  
Andressa C. Neves ◽  
Camila N. Bergamini ◽  
Rafaela de O. Leonardo ◽  
Manoel P. Gonçalves ◽  
Dilcemara C. Zenatti ◽  
...  

ABSTRACT This study aimed to evaluate the effect of applying increasing doses of biofertilizer obtained by the anaerobic digestion of cassava effluent on the development of crambe plants. The experiment was conducted in a protected environment at the Federal University of Paraná (UFPR), Palotina Sector, between April and August 2015. A completely randomized design was used, and five different treatments with the following doses were applied in five replicates: 0, 40, 80, 120, and 160 kg ha-1 of K2O. The following parameters related to plant development were evaluated: final height, stem diameter, number of branches, dry shoot and root biomass, mass of the grains, and oil content. The 160 kg K2O ha-1 dose was found to have the best influence on the plant development, because all the measured parameters reached their highest values at this dose, except for oil content, which attained the highest percentage in the case of the control treatment (0 kg ha-1 of K2O). This study proved that the biofertilizer obtained by anaerobic digestion of cassava effluent can be used as an alternative to regular fertilizers in cultivating crambe.


Sign in / Sign up

Export Citation Format

Share Document