Disclosing the future food security risk of China based on crop production and water scarcity under diverse socioeconomic and climate scenarios

Author(s):  
Lei Chen ◽  
Jianxia Chang ◽  
Yimin Wang ◽  
Aijun Guo ◽  
Yuanyuan Liu ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 885
Author(s):  
Aida M. Díez ◽  
Helen E. Valencia ◽  
Maria Meledina ◽  
Joachim Mayer ◽  
Yury V. Kolen'ko

Considering water scarcity, photo-based processes have been presented as a depollution technique, which should be optimized in order to be applied in the future. For that, the addition of an active photocatalyst and the usage of solar radiation are mandatory steps. Thus, Fe3O4–SiO2–TiO2 was synthesized, and its performance was evaluated using simulated solar radiation and methylene blue as a model pollutant. Under optimal conditions, 86% degradation was attained in 1 h. These results were compared to recent published data, and the better performance can be attributed to both the operational conditions selection and the higher photocatalyst activity. Indeed, Fe3O4–SiO2–TiO2 was physico-chemically characterized with techniques such as XRD, N2 isotherms, spectrophotometry, FTIR, electrochemical assays and TEM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


Food Security ◽  
2021 ◽  
Author(s):  
Alain Ndoli ◽  
Athanase Mukuralinda ◽  
Antonius G. T. Schut ◽  
Miyuki Iiyama ◽  
Jean Damascene Ndayambaje ◽  
...  

AbstractThe world is challenged to meet the food demand of a growing population, especially in developing countries. Given the ambitious plans to scale up agroforestry in Africa, an improved understanding of the effect of agroforestry practices on the already challenged food security of rural households is crucial. The present study was undertaken to assess how on-farm trees impacted food security in addition to other household income sources in Rwanda. In each of the six agroecologies of Rwanda, a stratified sampling procedure was used where two administrative cells (4th formal administrative level) were selected in which households were randomly selected for interviews. A survey including 399 farmers was conducted and farmers were grouped in three types of agroforestry practice (i) low practitioners (LAP) represented by the first tertile, (ii) medium practitioners (MAP) represented by the second tertile and (iii) high practitioners (HAP) represented by the third tertile of households in terms of tree number. Asset values, household income sources, crop production, farm size, crop yield, and food security (food energy needs) were quantified among the types of agroforestry practice. A larger proportion of HAP households had access to adequate quantity and diversity of food when compared with MAP and LAP households. Food security probability was higher for households with more resources, including land, trees and livestock, coinciding with an increased crop and livestock income. We found no difference in asset endowment among types of agroforestry practices, while farmers in agroecologies with smaller farms (0.42 ha to 0.66 ha) had more on-farm trees (212 to 358 trees per household) than farms in agroecologies with larger farms (0.96 ha to 1.23 ha) which had 49 to 129 trees per household, probably due to differences in biophysical conditions. A positive association between tree density and food security was found in two out of six agroecologies. The proportion of income that came from tree products was high (> 20%) for a small fraction of farmers (12%), with the more food insecure households relying more on income from tree products than households with better food security status. Thus, tree income can be percieved as a “safety net” for the poorest households.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 419
Author(s):  
Jordi Sardans ◽  
Josep Peñuelas

Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem–phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. We synthesized these roles from an integrated perspective, considering the metabolic and physiological functions of individual plants and their complex roles in terrestrial ecosystem functions and food security within the current context of ongoing global change. Thus, we provide a bridge between studies of K+ at the plant and ecological levels to ultimately claim that K+ should be considered at least at a level similar to N and P in terrestrial ecological studies.


Author(s):  
Luoman Pu ◽  
Jiuchun Yang ◽  
Lingxue Yu ◽  
Changsheng Xiong ◽  
Fengqin Yan ◽  
...  

Crop potential yields in cropland are the essential reflection of the utilization of cropland resources. The changes of the quantity, quality, and spatial distribution of cropland will directly affect the crop potential yields, so it is very crucial to simulate future cropland distribution and predict crop potential yields to ensure the future food security. In the present study, the Cellular Automata (CA)-Markov model was employed to simulate land-use changes in Northeast China during 2015–2050. Then, the Global Agro-ecological Zones (GAEZ) model was used to predict maize potential yields in Northeast China in 2050, and the spatio-temporal changes of maize potential yields during 2015–2050 were explored. The results were the following. (1) The woodland and grassland decreased by 5.13 million ha and 1.74 million ha respectively in Northeast China from 2015 to 2050, which were mainly converted into unused land. Most of the dryland was converted to paddy field and built-up land. (2) In 2050, the total maize potential production and average potential yield in Northeast China were 218.09 million tonnes and 6880.59 kg/ha. Thirteen prefecture-level cities had maize potential production of more than 7 million tonnes, and 11 cities had maize potential yields of more than 8000 kg/ha. (3) During 2015–2050, the total maize potential production and average yield decreased by around 23 million tonnes and 700 kg/ha in Northeast China, respectively. (4) The maize potential production increased in 15 cities located in the plain areas over the 35 years. The potential yields increased in only nine cities, which were mainly located in the Sanjiang Plain and the southeastern regions. The results highlight the importance of coping with the future land-use changes actively, maintaining the balance of farmland occupation and compensation, improving the cropland quality, and ensuring food security in Northeast China.


Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


Sign in / Sign up

Export Citation Format

Share Document