Catalytic hydrolysis: A novel role of zero-valent iron in haloacetonitrile degradation and transformation in unbuffered systems

Author(s):  
Di Zhang ◽  
Shengkun Dong ◽  
Aihong Zhang ◽  
Li Chen ◽  
Zhenxun Yu ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2559
Author(s):  
Maja Radziemska ◽  
Zygmunt M. Gusiatin ◽  
Jiri Holatko ◽  
Tereza Hammerschmiedt ◽  
Andrzej Głuchowski ◽  
...  

In recent years, a lot of attention has been given to searching for new additives which will effectively facilitate the process of immobilizing contaminants in the soil. This work considers the role of the enhanced nano zero valent iron (nZVI) strategy in the phytostabilization of soil contaminated with potentially toxic elements (PTEs). The experiment was carried out on soil that was highly contaminated with PTEs derived from areas in which metal waste had been stored for many years. The plants used comprised a mixture of grasses—Lolium perenne L. and Festuca rubra L. To determine the effect of the nZVI on the content of PTEs in soil and plants, the samples were analyzed using flame atomic absorption spectrometry (FAAS). The addition of nZVI significantly increased average plant biomass (38%), the contents of Cu (above 2-fold), Ni (44%), Cd (29%), Pb (68%), Zn (44%), and Cr (above 2-fold) in the roots as well as the soil pH. The addition of nZVI, on the other hand, was most effective in reducing the Zn content of soil when compared to the control series. Based on the investigations conducted, the application of nZVI to soil highly contaminated with PTEs is potentially beneficial for the restoration of polluted lands.


2021 ◽  
Vol 55 (4) ◽  
pp. 2628-2638
Author(s):  
Zhen Cao ◽  
Hao Li ◽  
Gregory V. Lowry ◽  
Xiaoyang Shi ◽  
Xiangcheng Pan ◽  
...  

Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 30-46
Author(s):  
Léa Vilcocq ◽  
Agnès Crepet ◽  
Patrick Jame ◽  
Florbela Carvalheiro ◽  
Luis C. Duarte

Three different types of biomass sourced from forestry waste (eucalyptus residues), agricultural waste (wheat straw), and energy crop (miscanthus) were used as starting materials to produce hemicellulosic sugars, furans (furfural and hydroxymethylfurfural), and oligosaccharides. A two-step hybrid process was implemented; biomass was first autohydrolysed without any additive to extract hemicelluloses and dissolve it in water. Then, the hydrolysate was treated with a solid acid catalyst, TiO2-WOx, in order to achieve hydrolysis and produce monomeric sugars and furans. This article investigates the role of the biomass type, autohydrolysis experimental conditions, polymerisation degree and composition of hemicelluloses on the performance of the process coupling autohydrolysis and catalytic hydrolysis. The highest global yields of both oligosaccharides and monomeric sugars were obtained from Eucalyptus (37% and 18%, respectively).


2018 ◽  
Vol 25 (18) ◽  
pp. 17797-17806 ◽  
Author(s):  
Buddhika Gunawardana ◽  
Peter J. Swedlund ◽  
Naresh Singhal ◽  
Michel K. Nieuwoudt
Keyword(s):  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1128
Author(s):  
Seyedeh-Masoumeh Taghizadeh ◽  
Aydin Berenjian ◽  
Marziyeh Zare ◽  
Alireza Ebrahiminezhad

Among all minerals, iron is one of the elements identified early by human beings to take advantage of and be used. The role of iron in human life is so great that it made an era in the ages of humanity. Pure iron has a shiny grayish-silver color, but after combining with oxygen and water it can make a colorful set of materials with divergent properties. This diversity sometimes appears ambiguous but provides variety of applications. In fact, iron can come in different forms: zero-valent iron (pure iron), iron oxides, iron hydroxides, and iron oxide hydroxides. By taking these divergent materials into the nano realm, new properties are exhibited, providing us with even more applications. This review deals with iron as a magic element in the nano realm and provides comprehensive data about its structure, properties, synthesis techniques, and applications of various forms of iron-based nanostructures in the science, medicine, and technology sectors.


2020 ◽  
Vol 300 ◽  
pp. 122667 ◽  
Author(s):  
Weichao Xu ◽  
He Zhao ◽  
Hongbin Cao ◽  
Yuxiu Zhang ◽  
Yuxing Sheng ◽  
...  

2015 ◽  
Vol 72 (9) ◽  
pp. 1463-1471 ◽  
Author(s):  
Hui Li ◽  
Yong-sheng Zhao ◽  
Zhan-tao Han ◽  
Mei Hong

The growing use of nanoscale zero-valent iron (NZVI) in the remediation of contaminated groundwater raises concerns regarding its transport in aquifers. Laboratory-scale sand-packed column experiments were conducted with bare and sucrose-modified NZVI (SM-NZVI) to improve our understanding of the transport of the nanoparticles in saturated porous media, as well as the role of media size, suspension injection rate and concentration on the nanoparticle behavior. As the main indicative parameters, the normalized effluent concentration was measured and the deposition rate coefficient (k) was calculated for different simulated conditions. Overall, compared to the high retention of bare NZVI in the saturated silica column, SM-NZVI suspension could travel through the coarse sand column easily. However, the transport of SM-NZVI particles was not very satisfactory in a smaller size granular matrix especially in fine silica sand. Furthermore, the value of k regularly decreased with the increasing injection rate of suspension but increased with suspension concentration, which could reflect the role of these factors in the SM-NZVI travel process. The calculation of k-value at the tests condition adequately described the experimental results from the point of deposition dynamics, which meant the assumption of first-order deposition kinetics for the transport of NZVI particles was reasonable and feasible.


Sign in / Sign up

Export Citation Format

Share Document