hemicellulosic sugars
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 2)

Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 30-46
Author(s):  
Léa Vilcocq ◽  
Agnès Crepet ◽  
Patrick Jame ◽  
Florbela Carvalheiro ◽  
Luis C. Duarte

Three different types of biomass sourced from forestry waste (eucalyptus residues), agricultural waste (wheat straw), and energy crop (miscanthus) were used as starting materials to produce hemicellulosic sugars, furans (furfural and hydroxymethylfurfural), and oligosaccharides. A two-step hybrid process was implemented; biomass was first autohydrolysed without any additive to extract hemicelluloses and dissolve it in water. Then, the hydrolysate was treated with a solid acid catalyst, TiO2-WOx, in order to achieve hydrolysis and produce monomeric sugars and furans. This article investigates the role of the biomass type, autohydrolysis experimental conditions, polymerisation degree and composition of hemicelluloses on the performance of the process coupling autohydrolysis and catalytic hydrolysis. The highest global yields of both oligosaccharides and monomeric sugars were obtained from Eucalyptus (37% and 18%, respectively).


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaodi Wang ◽  
Yongchao Zhang ◽  
Luyao Wang ◽  
Xiaoju Wang ◽  
Qingxi Hou ◽  
...  

AbstractAn efficient separation technology for hydrolysates towards a full valorization of bamboo is still a tough challenge, especially regarding the lignin and lignin-carbohydrate complexes (LCCs). The present study aimed to develop a facile approach using organic solvent extraction for efficiently fractionating the main components of bamboo hydrolysates. The high-purity lignin with only a trace of carbohydrates was first obtained by precipitation of the bamboo hydrolysate. The water-soluble lignin (WSL) fraction was extracted in organic solvent through a three-stage organic solvent extraction process, and the hemicellulosic sugars with increased purity were also collected. Furthermore, a thorough characterization including various NMR techniques (31P, 13C, and 2D-HSQC), GPC, and GC-MS was conducted to the obtained lignin-rich-fractions. It was found that the WSL fraction contained abundant functional groups and tremendous amount of LCC structures. As compared to native LCC of bamboo, the WSL fraction exhibited more typical LCC linkages, i.e. phenyl glycoside linkage, which is the main type of chemical linkage between lignin and carbohydrate in both LCC samples. The results demonstrate that organic phase extraction is a highly efficient protocol for the fractionation of hydrolysate and the isolation of LCC-rich streams possessing great potential applications.


2020 ◽  
Vol 10 (14) ◽  
pp. 4989
Author(s):  
Nirmal Ghimire ◽  
Rune Bakke ◽  
Wenche Hennie Bergland

Norway spruce (Picea abies) is an industrially important softwood species available in northern Europe and can be used to produce bio-methane after proper pretreatment to overcome its recalcitrant complex structure. Hot water extraction (HWE) pretreatment at two different conditions (170 °C for 90 min (severity 4.02) and 140 °C for 300 min (severity 3.65)) was applied to extract hemicellulosic sugars from Norway spruce for thermophilic anaerobic digestion (AD) of the hydrolysate. The methane yield of hydrolysate prepared at the lower pretreatment severity was found to be 189 NmL/gCOD compared to 162 NmL/gCOD after the higher pretreatment severity suggesting higher pretreatment severity hampers the methane yield due to the presence of inhibitors formed due to sugars and lignin degradation and soluble lignin, extracted partially along with hemicellulosic sugars. Synthetic hydrolysates simulating real hydrolysates (H170syn and H140syn) had improved methane yield of 285 NmL/gCOD and 295 NmL/gCOD, respectively in the absence of both the inhibitors and soluble lignin. An effect of organic loadings (OLs) on the methane yield was observed with a negative correlation between OL and methane yield. The maximum methane yield was 290 NmL/gCOD for hydrolysate pretreated at 140 °C compared to 195 NmL/gCOD for hydrolyate pretreated at 170 °C, both at the lowest OL of 6 gCOD/L. Therefore, both pretreatment conditions and OL need to be considered for efficient methane production from extracted hydrolysate. Such substrates can be utilized in continuous flow industrial AD with well-adapted cultures with stable organic loading rates.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 533 ◽  
Author(s):  
Juan Carlos López-Linares ◽  
Irene Gómez-Cruz ◽  
Encarnación Ruiz ◽  
Inmaculada Romero ◽  
Eulogio Castro

Exhausted olive pomace (EOP) is the main residue generated in olive oil industries, after the extraction of the residual oil from olive pomace with hexane. This work studies the ethanol production from hemicellulosic sugars of EOP. The fermentability of the sugar solution, resulting from the acid pretreatment of EOP, was evaluated using Escherichia coli SL100, although a detoxification step was required before fermentation. Overliming and activated charcoal detoxification were tested to minimize the presence of inhibitory compounds in the hydrolysate and to achieve a fermentable medium. E. coli assimilated all sugars in both detoxified hydrolysates and achieved ethanol yields of about 90% of the theoretical one. However, the fermentation time was much shorter when the hydrolysate had been detoxified with activated charcoal (20 h versus 120 h).


2020 ◽  
Vol 11 (15) ◽  
pp. 2681-2691 ◽  
Author(s):  
Marco Piccini ◽  
David J. Leak ◽  
Christopher J. Chuck ◽  
Antoine Buchard

High molecular weight renewable polyesters are synthesised from an unsaturated fatty acid and structurally unmodified, hemicellulosic sugars, with post-polymerisation modification inducing semicrystallinity and allowing casting of transparent films.


BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 6501-6515
Author(s):  
Liping Tan ◽  
Zhongyang Liu ◽  
Tongjun Liu ◽  
Fangfang Wang

Fractionation of corn stover (CS) was carried out by bisulfite pretreatment in order to improve the production of bioethanol and high-value chemicals. Firstly, the optimum bisulfite pretreatment conditions of CS (170 C, 30 min, 7% NaHSO3, 1% H2SO4) were identified. Next, a biorefinery process of bisulfite pretreatment for CS was proposed. CS was separated into solid and liquor components using such pretreatment. The solid components were employed for bioethanol production by quasi-simultaneous saccharification and fermentation (Q-SSF). The bisulfite liquor was fractionated into hemicellulosic sugars and lignin by different types of resins. It was shown that CS components could be effectively fractionated through bisulfite pretreatment in combination with resin separation to produce bioethanol, hemicellulosic sugars, and lignosulfonate.


Sign in / Sign up

Export Citation Format

Share Document