Local emissions and secondary pollutants cause severe PM2.5 elevation in urban air at the south edge of the North China Plain: Results from winter haze of 2017–2018 at a mega city

Author(s):  
Xiaoyan Song ◽  
Jia Jia ◽  
Fang Wu ◽  
Hongya Niu ◽  
Qingxia Ma ◽  
...  
2020 ◽  
Author(s):  
Jiarui Wu ◽  
Naifang Bei ◽  
Yuan Wang ◽  
Xia Li ◽  
Suixin Liu ◽  
...  

Abstract. Accurate identification and quantitative source apportionment of fine particulate matters (PM2.5) provide an important prerequisite for design and implementation of emission control strategies to reduce PM pollution. Therefore, a source-oriented version of the WRF-Chem model is developed in the study to make source apportionment of PM2.5 in the North China Plain (NCP). A persistent and heavy haze event occurred in the NCP from 05 December 2015 to 04 January 2016 is simulated using the model as a case study to quantify PM2.5 contributions of local emissions and regional transport. Results show that local and non-local emissions contribute 36.3 % and 63.7 % of the PM2.5 mass in Beijing during the haze event on average. When Beijing's air quality is excellent or good in terms of hourly PM2.5 concentrations, local emissions dominate the PM2.5 mass with contributions exceeding 50 %. However, when the air quality is severely polluted, the PM2.5 contribution of non-local emissions is around 75 %. The non-local emissions also dominate the Tianjin's air quality, with average PM2.5 contributions exceeding 70 %. The PM2.5 level in Hebei and Shandong is generally controlled by local emissions, but in Henan, local and non-local emissions play an almost equivalent role in the PM2.5 level, except when the air quality is severely polluted, with non-local PM2.5 contributions of over 60 %. Additionally, the primary aerosol species are generally dominated by local emissions with the average contribution exceeding 50%. However, the source apportionment of secondary aerosols shows more evident regional characteristics. Therefore, except cooperation with neighboring provinces to carry out strict emission mitigation measures, reducing primary aerosols constitutes the priority to alleviate PM pollution in the NCP, especially in Beijing and Tianjin.


2016 ◽  
Author(s):  
Yi Zhu ◽  
Jiping Zhang ◽  
Junxia Wang ◽  
Wenyuan Chen ◽  
Yiqun Han ◽  
...  

Abstract. The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from June 11 to July 15, 2013. High median concentrations of sulphur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 μg m−3) and ultrafine particles (28 350 cm−3) were measured. Most of the high values, i.e., 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside would have a diluting effect on pollutants, while south winds would bring in pollutants accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south–north winds over the NCP and partly by local emissions.


2011 ◽  
Vol 11 (3) ◽  
pp. 9567-9605 ◽  
Author(s):  
N. Ma ◽  
C. S. Zhao ◽  
A. Nowak ◽  
T. Müller ◽  
S. Pfeifer ◽  
...  

Abstract. The largest uncertainty in the estimation of radiative forcings on climate stems from atmospheric aerosols. In winter and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties including scattering coefficient (σsp), hemispheric back scattering coefficient (σbsp), absorption coefficient (σap, as well as single scattering albedo (ω) are presented. The characteristics of diurnal and seasonal variations are analyzed together with the meteorological and satellite data. The mean values of σsp, 550 nm of the dry aerosol in winter and summer are 280 ± 253 and 379 ± 251 Mm−1, respectively. The average σap for the two periods are respectively 47 ± 38 and 43 ± 27 Mm−1. The mean values of ω are 0.83 ± 0.05 and 0.87 ± 0.05 for winter and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional polluted aerosol of the North China Plain. Pronounced diurnal cycle of σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and accumulation of local emissions during night-time. Regional transport of pollutants from southwest in the NCP is significant both in winter and summer, while high values of σsp and σap correlate with calm winds in winter, which indicating the significant contribution of local emissions. An optical closure experiment is conducted to better understand uncertainties of the measurements. Good correlations (R>0.98) are found between values measured by nephelometer and values calculated with a modified Mie model. Monte Carlo simulations show an uncertainty of about 30% for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with measured values, indicating a stable performance of instruments and thus a reliable aerosol optical data.


2021 ◽  
Vol 21 (3) ◽  
pp. 2229-2249
Author(s):  
Jiarui Wu ◽  
Naifang Bei ◽  
Yuan Wang ◽  
Xia Li ◽  
Suixin Liu ◽  
...  

Abstract. Accurate identification and quantitative source apportionment of fine particulate matter (PM2.5) provide an important prerequisite for design and implementation of emission control strategies to reduce PM pollution. Therefore, a source-oriented version of the WRF-Chem model is developed in the study to conduct source apportionment of PM2.5 in the North China Plain (NCP). A persistent and heavy haze event that occurred in the NCP from 5 December 2015 to 4 January 2016 is simulated using the model as a case study to quantify PM2.5 contributions of local emissions and regional transport. Results show that local and nonlocal emissions contribute 36.3 % and 63.7 % of the PM2.5 mass in Beijing during the haze event on average. When Beijing's air quality is excellent or good in terms of hourly PM2.5 concentrations, local emissions dominate the PM2.5 mass, with contributions exceeding 50 %. However, when the air quality is severely polluted, the PM2.5 contribution of nonlocal emissions is around 75 %. Nonlocal emissions also dominate Tianjin's air quality, with average PM2.5 contributions exceeding 65 %. The PM2.5 level in Hebei and Shandong is generally controlled by local emissions, but in Henan, local and nonlocal emissions play an almost equivalent role in the PM2.5 level, except when the air quality is severely polluted, with nonlocal PM2.5 contributions of over 60 %. Additionally, the primary aerosol species are generally dominated by local emissions, with the average contribution exceeding 50 %. However, the source apportionment of secondary aerosols shows more evident regional characteristics. Therefore, except for cooperation with neighboring provinces to carry out strict emission mitigation measures, reducing primary aerosols is a priority to alleviate PM pollution in the NCP, especially in Beijing and Tianjin.


2021 ◽  
Vol 21 (20) ◽  
pp. 15431-15445
Author(s):  
Lili Ren ◽  
Yang Yang ◽  
Hailong Wang ◽  
Pinya Wang ◽  
Lei Chen ◽  
...  

Abstract. Due to the coronavirus disease 2019 (COVID-19) pandemic, human activities and industrial productions were strictly restricted during January–March 2020 in China. Despite the fact that anthropogenic aerosol emissions largely decreased, haze events still occurred. Characterization of aerosol transport pathways and attribution of aerosol sources from specific regions are beneficial to air quality and pandemic control strategies. This study establishes source–receptor relationships in various regions covering all of China during the COVID-19 outbreak based on the Community Atmosphere Model version 5 with Explicit Aerosol Source Tagging (CAM5-EAST). Our analysis shows that PM2.5 burden over the North China Plain between 30 January and 19 February is mostly contributed by local emissions (40 %–66 %). For other regions in China, PM2.5 burden is largely contributed from nonlocal sources. During the most polluted days of the COVID-19 outbreak, local emissions within the North China Plain and eastern China contributed 66 % and 87 % to the increase in surface PM2.5 concentrations, respectively. This is associated with the anomalous mid-tropospheric high pressure at the location of the climatological East Asia trough and the consequently weakened winds in the lower troposphere, leading to the local aerosol accumulation. The emissions outside China, especially those from South Asia and Southeast Asia, contribute over 50 % to the increase in PM2.5 concentration in southwestern China through transboundary transport during the most polluted day. As the reduction in emissions in the near future is desirable, aerosols from long-range transport and unfavorable meteorological conditions are increasingly important to regional air quality and need to be taken into account in clean-air plans.


Water Policy ◽  
2003 ◽  
Vol 5 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Jeremy Berkoff

The South-North Water Transfer Project (SNWTP), if fully developed, could divert 40-50 km3/yr from the Yangtse basin to the North China plain, alleviating water scarcity for 300-325M people living in what even then will be a highly water-stressed region. Construction of the next stage, diverting up to 20 km3 at a cost of about $17,000M (including $7000M in ancillary costs), is to start in 2002/3. A recent World Bank study suggests that the project is economically attractive. This conclusion has been disputed by the World Wildlife Fund (now the Worldwide Fund for Nature). This paper concludes that little confidence can be placed in either of these analyses. It therefore seeks to throw light on how the project fits within a broader regional and agricultural development setting. The project is hugely expensive, and would at the margin tend to preserve water in low value agriculture and require the resettlement of upwards of 300,000 people. On the other hand, the pace and scale of socio-economic change in China are without precedent, and adjustment problems on the North China plain are greatly exacerbated by water scarcity. Reallocation of water from irrigation to municipal and industrial uses or to the environment is socially divisive and in some instances physically impracticable. The transfer project would greatly alleviate these difficulties. It is these arguments (which are ultimately political and pragmatic), rather than those based strictly on economic or food security concerns, that make the Government's decision to proceed with the project fully understandable.


2018 ◽  
Author(s):  
Zhaofeng Tan ◽  
Franz Rohrer ◽  
Keding Lu ◽  
Xuefei Ma ◽  
Birger Bohn ◽  
...  

Abstract. The first wintertime in-situ measurements of hydroxyl (OH), hydroperoxy (HO2) and organic peroxy (RO2) radicals (ROx = OH + HO2 + RO2) in combination with observations of total reactivity of OH radicals, kOH in Beijing are presented. The field campaign “Beijing winter finE particle STudy – Oxidation, Nucleation and light Extinctions” (BEST-ONE) was conducted at the suburban site Huairou near Beijing from January to March 2016. It aimed to understand oxidative capacity during wintertime and to elucidate the secondary pollutants formation mechanism in the North China Plain (NCP). OH radical concentrations at noontime ranged from 2.4 × 106 cm−3 in severely polluted air (kOH ~ 27 s−1) to 3.6 × 106 cm−3 in relatively clean air (kOH ~ 5 s−1). These values are nearly two-fold larger than OH concentrations observed in previous winter campaign in Birmingham, Tokyo, and New York City. During this campaign, the total primary production rate of ROx radicals was dominated by the photolysis of nitrous acid accounting for 46 % of the identified primary production pathways for ROx radicals. Other important radical sources were alkene ozonolysis (28 %) and photolysis of oxygenated organic compounds (24 %). A box model was used to simulate the OH, HO2 and RO2 concentrations based on the observations of their long-lived precursors. The model was capable of reproducing the observed diurnal variation of the OH and peroxy radicals during clean days with a factor of 1.5. However, it largely underestimated HO2 and RO2 concentrations by factors up to 5 during pollution episodes. The HO2 and RO2 observed-to-modeled ratios increased with increasing NO concentrations, indicating a deficit in our understanding of the gas-phase chemistry in the high NOx regime. The OH concentrations observed in the presence of large OH reactivities indicate that atmospheric trace gas oxidation by photochemical processes can be highly effective even during wintertime, thereby facilitating the vigorous formation of secondary pollutants.


2019 ◽  
Vol 19 (7) ◽  
pp. 4499-4516 ◽  
Author(s):  
Huang Zheng ◽  
Shaofei Kong ◽  
Fangqi Wu ◽  
Yi Cheng ◽  
Zhenzhen Niu ◽  
...  

Abstract. Black carbon (BC), which is formed from the incomplete combustion of fuel sources (mainly fossil fuel, biofuel and open biomass burning), is a chemically inert optical absorber in the atmosphere. It has significant impacts on global climate, regional air quality and human health. During transportation, its physical and chemical characteristics as well as its sources change dramatically. To investigate the properties of BC (i.e., mass concentration, sources and optical properties) during intra-regional transport between the southern edge of the North China Plain (SE-NCP) and central China (CC), simultaneous BC observations were conducted in a megacity (Wuhan – WH) in CC, in three borderline cities (Xiangyang – XY, Suixian – SX and Hong'an – HA; from west to east) between the SE-NCP and CC, and in a city (Luohe – LH) in the SE-NCP during typical winter haze episodes. Using an Aethalometer, the highest equivalent BC (eBC) mass concentrations and the highest aerosol absorption coefficients (σabs) were found in LH in the SE-NCP, followed by the borderline cities (XY, SX and HA) and WH. The levels, sources, optical properties (i.e., σabs and absorption Ångström exponent, AAE) and geographic origins of eBC were different between clean and polluted periods. Compared with clean days, higher eBC levels (26.4 %–163 % higher) and σabs (18.2 %–236 % higher) were found during pollution episodes due to the increased combustion of fossil fuels (increased by 51.1 %–277 %), which was supported by the decreased AAE values (decreased by 7.40 %–12.7 %). The conditional bivariate probability function (CBPF) and concentration-weighted trajectory (CWT) results showed that the geographic origins of biomass burning (BCbb) and fossil fuel (BCff) combustion-derived BC were different. Air parcels from the south dominated for border sites during clean days, with contributions of 46.0 %–58.2 %, whereas trajectories from the northeast showed higher contributions (37.5 %–51.2 %) during pollution episodes. At the SE-NCP site (LH), transboundary influences from the south (CC) exhibited a more frequent impact (with air parcels from this direction comprising 47.8 % of all parcels) on the ambient eBC levels during pollution episodes. At WH, eBC was mainly from the northeast transport route throughout the observation period. Two transportation cases showed that the mass concentrations of eBC, BCff and σabs all increased, from upwind to downwind, whereas AAE decreased. This study highlights that intra-regional prevention and control for dominant sources at each specific site should be considered in order to improve the regional air quality.


2018 ◽  
Vol 18 (16) ◽  
pp. 12391-12411 ◽  
Author(s):  
Zhaofeng Tan ◽  
Franz Rohrer ◽  
Keding Lu ◽  
Xuefei Ma ◽  
Birger Bohn ◽  
...  

Abstract. The first wintertime in situ measurements of hydroxyl (OH), hydroperoxy (HO2) and organic peroxy (RO2) radicals (ROx=OH+HO2+RO2) in combination with observations of total reactivity of OH radicals, kOH in Beijing are presented. The field campaign “Beijing winter finE particle STudy – Oxidation, Nucleation and light Extinctions” (BEST-ONE) was conducted at the suburban site Huairou near Beijing from January to March 2016. It aimed to understand oxidative capacity during wintertime and to elucidate the secondary pollutants' formation mechanism in the North China Plain (NCP). OH radical concentrations at noontime ranged from 2.4×106cm-3 in severely polluted air (kOH∼27s-1) to 3.6×106cm-3 in relatively clean air (kOH∼5s-1). These values are nearly 2-fold larger than OH concentrations observed in previous winter campaigns in Birmingham, Tokyo, and New York City. During this campaign, the total primary production rate of ROx radicals was dominated by the photolysis of nitrous acid accounting for 46 % of the identified primary production pathways for ROx radicals. Other important radical sources were alkene ozonolysis (28 %) and photolysis of oxygenated organic compounds (24 %). A box model was used to simulate the OH, HO2 and RO2 concentrations based on the observations of their long-lived precursors. The model was capable of reproducing the observed diurnal variation of the OH and peroxy radicals during clean days with a factor of 1.5. However, it largely underestimated HO2 and RO2 concentrations by factors up to 5 during pollution episodes. The HO2 and RO2 observed-to-modeled ratios increased with increasing NO concentrations, indicating a deficit in our understanding of the gas-phase chemistry in the high NOx regime. The OH concentrations observed in the presence of large OH reactivities indicate that atmospheric trace gas oxidation by photochemical processes can be highly effective even during wintertime, thereby facilitating the vigorous formation of secondary pollutants.


2016 ◽  
Vol 16 (19) ◽  
pp. 12551-12565 ◽  
Author(s):  
Yi Zhu ◽  
Jiping Zhang ◽  
Junxia Wang ◽  
Wenyuan Chen ◽  
Yiqun Han ◽  
...  

Abstract. The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved, mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from 11 June to 15 July 2013. High median concentrations of sulfur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 µg m−3) and ultrafine particles (28 350 cm−3) were measured. Most of the high values, i.e. 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside this area would have a diluting effect on pollutants, while south winds would bring in pollutants that have accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south–north winds over the NCP and partly by local emissions.


Sign in / Sign up

Export Citation Format

Share Document