Black carbon and mineral dust in snow cover across a typical city of Northeast China

2022 ◽  
Vol 807 ◽  
pp. 150397
Author(s):  
Fan Zhang ◽  
Lijuan Zhang ◽  
Mingxi Pan ◽  
Xinyue Zhong ◽  
Enbo Zhao ◽  
...  
2017 ◽  
Author(s):  
Yulan Zhang ◽  
Shichang Kang ◽  
Michael Sprenger ◽  
Zhiyuan Cong ◽  
Tanguang Gao ◽  
...  

2020 ◽  
Author(s):  
Marion Réveillet ◽  
Marie Dumont ◽  
Simon Gascoin ◽  
Pierre Nabat ◽  
Matthieu Lafaysse ◽  
...  

<p>Light absorbing particles such as black carbon(BC) or mineral dust are known to darken the snow surface when deposited on the snow cover and amplify several snow-albedo feedbacks, drastically modifying the snowpack evolution and the snow cover duration. Mineral dust deposition on snow is generally more variablein time than black carbon deposition and can exhibit both a high inter and intra annual variability. In France, the Alps and the Pyrenees mountain ranges are affected by large dust deposition events originating from the Sahara . The aim of this study is to quantify the impact of these impurities on the snow cover variability over the last 39 years (1979-2018).</p><p>For that purpose, the detailed snowpack model Crocus with an explicit representation of impurities is forced by SAFRAN meteorological reanalysis and a downscaling of the simulated deposition fluxes from a regional climate model (ALADIN-Climate). Different simulations are performed: (i) considering dust and/or BC (i.e. explicit representation), (ii) without impurities and (iii) considering an implicit representation (i.e. empirical parameterization based on a decreasing law of the albebo with snow age).</p><p>Simulations are compared at point scale to the snow depth measured at more than 200 Meteo-France’s stations in each massif, and spatially evaluated over the 2000-2018 period in comparing thesnow cover area, snow cover duration and the Jacard index to MODIS snow products. Scores are generally better when considering the explicit representation of the impurities than when using the snow age as a proxy for light absorbing particles content.</p><p>Results indicate that dust and BC have a significant impact on the snow cover duration with strong variations in the magnitude of the impact from one year to another and from one location to another.We also investigate the contribution of light absorbing particles depositionto snow cover inter-annual variability based on statistical approaches.</p>


2017 ◽  
Author(s):  
Yulan Zhang ◽  
Shichang Kang ◽  
Michael Sprenger ◽  
Zhiyuan Cong ◽  
Tanguang Gao ◽  
...  

Abstract. Light-absorbing impurities (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow cover and ice. This study found that the black carbon, organic carbon, and dust concentrations in snow cover ranged generally from 202–17 468 ng g−1, 491–13 880 ng g−1, and 22–846 µg g−1, respectively, with higher concentrations in the central to northern areas of the Third Pole region (referred to by scientists also as the Tibetan Plateau and its surrounding mountains). Footprint analyses suggested that the northern Third Pole was influenced mainly by air masses from Central Asia with some Euro-Asia influence; air masses in the central and Himalayan region originated mainly from Central and South Asia. The open burning-sourced black carbon contributions decreased from ~ 50 % in the southern Third Pole region to ~ 30 % in the northern Third Pole region. The contribution of black carbon and dust to snow albedo reduction reached approximately 37 % and 15 %, respectively. The effect of black carbon and dust reduced the average snow cover duration by 3.1 ± 0.1 days to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had an import implication for snowmelt water loss over the Third Pole region. Findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.


2018 ◽  
Vol 12 (2) ◽  
pp. 413-431 ◽  
Author(s):  
Yulan Zhang ◽  
Shichang Kang ◽  
Michael Sprenger ◽  
Zhiyuan Cong ◽  
Tanguang Gao ◽  
...  

Abstract. Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g−1, 491 to 13 880 ng g−1, and 22 to 846 µg g−1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ∼ 50 % in the southern TP to ∼ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.


2020 ◽  
Vol 20 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Yongjoo Choi ◽  
Yugo Kanaya ◽  
Seung-Myung Park ◽  
Atsushi Matsuki ◽  
Yasuhiro Sadanaga ◽  
...  

Abstract. The black carbon (BC) and carbon monoxide (CO) emission ratios were estimated and compiled from long-term, harmonized observations of the ΔBC∕ΔCO ratios under conditions unaffected by wet deposition at four sites in East Asia, including two sites in South Korea (Baengnyeong and Gosan) and two sites in Japan (Noto and Fukuoka). Extended spatio-temporal coverage enabled estimation of the full seasonality and elucidation of the emission ratio in North Korea for the first time. The estimated ratios were used to validate the Regional Emission inventory in ASia (REAS) version 2.1 based on six study domains (“East China”, “North China”, “Northeast China”, South Korea, North Korea, and Japan). We found that the ΔBC∕ΔCO ratios from four sites converged into a narrow range (6.2–7.9 ng m−3 ppb−1), suggesting consistency in the results from independent observations and similarity in source profiles over the regions. The BC∕CO ratios from the REAS emission inventory (7.7 ng m−3 ppb−1 for East China – 23.2 ng m−3 ppb−1 for South Korea) were overestimated by factors of 1.1 for East China to 3.0 for South Korea, whereas the ratio for North Korea (3.7 ng m−3 ppb−1 from REAS) was underestimated by a factor of 2.0, most likely due to inaccurate emissions from the road transportation sector. Seasonal variation in the BC∕CO ratio from REAS was found to be the highest in winter (China and North Korea) or summer (South Korea and Japan), whereas the measured ΔBC∕ΔCO ratio was the highest in spring in all source regions, indicating the need for further characterization of the seasonality when creating a bottom-up emission inventory. At levels of administrative districts, overestimation in Seoul, the southwestern regions of South Korea, and Northeast China was noticeable, and underestimation was mainly observed in the western regions in North Korea, including Pyongyang. These diagnoses are useful for identifying regions where revisions in the inventory are necessary, providing guidance for the refinement of BC and CO emission rate estimates over East Asia.


2022 ◽  
Vol 14 (2) ◽  
pp. 262
Author(s):  
Hui Guo ◽  
Xiaoyan Wang ◽  
Zecheng Guo ◽  
Siyong Chen

Snow cover is an important water source and even an Essential Climate Variable (ECV) as defined by the World Meteorological Organization (WMO). Assessing snow phenology and its driving factors in Northeast China will help with comprehensively understanding the role of snow cover in regional water cycle and climate change. This study presents spatiotemporal variations in snow phenology and the relative importance of potential drivers, including climate, geography, and the normalized difference vegetation index (NDVI), based on the MODIS snow products across Northeast China from 2001 to 2018. The results indicated that the snow cover days (SCD), snow cover onset dates (SCOD) and snow cover end dates (SCED) all showed obvious latitudinal distribution characteristics. As the latitude gradually increases, SCD becomes longer, SCOD advances and SCED delays. Overall, there is a growing tendency in SCD and a delayed trend in SCED across time. The variations in snow phenology were driven by mean temperature, followed by latitude, while precipitation, aspect and slope all had little effect on the SCD, SCOD and SCED. With decreasing temperature, the SCD and SCED showed upward trends. The mean temperature has negatively correlation with SCD and SCED and positively correlation with SCOD. With increasing latitude, the change rate of the SCD, SCOD and SCED in the whole Northeast China were 10.20 d/degree, −3.82 d/degree and 5.41 d/degree, respectively, and the change rate of snow phenology in forested areas was lower than that in nonforested areas. At the same latitude, the snow phenology for different underlying surfaces varied greatly. The correlations between the snow phenology and NDVI were mainly positive, but weak correlations accounted for a large proportion.


2019 ◽  
Vol 13 (8) ◽  
pp. 2169-2187 ◽  
Author(s):  
Francois Tuzet ◽  
Marie Dumont ◽  
Laurent Arnaud ◽  
Didier Voisin ◽  
Maxim Lamare ◽  
...  

Abstract. Light-absorbing particles (LAPs) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAPs significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of snow-covered areas. However, linking measurements of LAP concentration in snow to their actual radiative impact is a challenging issue which is not fully resolved. In the present paper, we point out a new method based on spectral irradiance profile (SIP) measurements which makes it possible to identify the radiative impact of LAPs on visible light extinction in homogeneous layers of the snowpack. From this impact on light extinction it is possible to infer LAP concentrations present in each layer using radiative transfer theory. This study relies on a unique dataset composed of 26 spectral irradiance profile measurements in the wavelength range 350–950 nm with concomitant profile measurements of snow physical properties and LAP concentrations, collected in the Alps over two snow seasons in winter and spring conditions. For 55 homogeneous snow layers identified in our dataset, the concentrations retrieved from SIP measurements are compared to chemical measurements of LAP concentrations. A good correlation is observed for measured concentrations higher than 5 ng g−1 (r2=0.81) despite a clear positive bias. The potential causes of this bias are discussed, underlining a strong sensitivity of our method to LAP optical properties and to the relationship between snow microstructure and snow optical properties used in the theory. Additional uncertainties such as artefacts in the measurement technique for SIP and chemical contents along with LAP absorption efficiency may explain part of this bias. In addition, spectral information on LAP absorption can be retrieved from SIP measurements. We show that for layers containing a unique absorber, this absorber can be identified in some cases (e.g. mineral dust vs. black carbon). We also observe an enhancement of light absorption between 350 and 650 nm in the presence of liquid water in the snowpack, which is discussed but not fully elucidated. A single SIP acquisition lasts approximately 1 min and is hence much faster than collecting a profile of chemical measurements. With the recent advances in modelling LAP–snow interactions, our method could become an attractive alternative to estimate vertical profiles of LAP concentrations in snow.


Sign in / Sign up

Export Citation Format

Share Document