scholarly journals Regional variability in black carbon and carbon monoxide ratio from long-term observations over East Asia: assessment of representativeness for black carbon (BC) and carbon monoxide (CO) emission inventories

2020 ◽  
Vol 20 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Yongjoo Choi ◽  
Yugo Kanaya ◽  
Seung-Myung Park ◽  
Atsushi Matsuki ◽  
Yasuhiro Sadanaga ◽  
...  

Abstract. The black carbon (BC) and carbon monoxide (CO) emission ratios were estimated and compiled from long-term, harmonized observations of the ΔBC∕ΔCO ratios under conditions unaffected by wet deposition at four sites in East Asia, including two sites in South Korea (Baengnyeong and Gosan) and two sites in Japan (Noto and Fukuoka). Extended spatio-temporal coverage enabled estimation of the full seasonality and elucidation of the emission ratio in North Korea for the first time. The estimated ratios were used to validate the Regional Emission inventory in ASia (REAS) version 2.1 based on six study domains (“East China”, “North China”, “Northeast China”, South Korea, North Korea, and Japan). We found that the ΔBC∕ΔCO ratios from four sites converged into a narrow range (6.2–7.9 ng m−3 ppb−1), suggesting consistency in the results from independent observations and similarity in source profiles over the regions. The BC∕CO ratios from the REAS emission inventory (7.7 ng m−3 ppb−1 for East China – 23.2 ng m−3 ppb−1 for South Korea) were overestimated by factors of 1.1 for East China to 3.0 for South Korea, whereas the ratio for North Korea (3.7 ng m−3 ppb−1 from REAS) was underestimated by a factor of 2.0, most likely due to inaccurate emissions from the road transportation sector. Seasonal variation in the BC∕CO ratio from REAS was found to be the highest in winter (China and North Korea) or summer (South Korea and Japan), whereas the measured ΔBC∕ΔCO ratio was the highest in spring in all source regions, indicating the need for further characterization of the seasonality when creating a bottom-up emission inventory. At levels of administrative districts, overestimation in Seoul, the southwestern regions of South Korea, and Northeast China was noticeable, and underestimation was mainly observed in the western regions in North Korea, including Pyongyang. These diagnoses are useful for identifying regions where revisions in the inventory are necessary, providing guidance for the refinement of BC and CO emission rate estimates over East Asia.

2019 ◽  
Author(s):  
Yongjoo Choi ◽  
Yugo Kanaya ◽  
Seung-Myung Park ◽  
Atsushi Matsuki ◽  
Yasuhiro Sadanaga ◽  
...  

Abstract. The BC/CO emission ratios were estimated and compiled from long-term, harmonized observations of the ΔBC/ΔCO ratios under conditions unaffected by wet deposition at four sites in East Asia, including two sites in Korea (Baengnyeong and Gosan) and two sites in Japan (Noto and Fukuoka). Extended spatio-temporal coverage enabled estimation of full seasonality and elucidation of the emission ratio in North Korea, for the first time. The estimated ratios were used to validate the Regional Emission inventory in Asia (REAS) version 2.1 based on six study domains (East China, North China, Northeast China, South Korea, North Korea, and Japan). We found that the ΔBC/ΔCO ratios from four sites converged into a narrow range (6.2–7.9 ng m−3 ppb−1), suggesting consistency in the results from independent observations and similarity in source profiles over the regions. The BC/CO ratios from the REAS emission inventory (7.7 ng m−3 ppb−1 for East China – 23.2 ng m−3 ppb−1 for South Korea) were overestimated by factors of 1.1 for East China to 3.0 for South Korea, whereas the ratio for North Korea (3.7 ng m−3 ppb−1 from REAS) was underestimated by a factor of 2.0, most likely due to inaccurate emissions from the road transportation sector. Seasonal variation in the BC/CO ratio from REAS was found to be the highest in winter (China and North Korea) or summer (South Korea and Japan), whereas the measured ΔBC/ΔCO ratio was highest in spring in all source regions, indicating the need for further characterization of seasonality when creating a bottom-up emission inventory. At levels of administrative districts, overestimation in Seoul, the southwest regions of South Korea, and Northeast China was noticeable, and underestimation was mainly observed in the western regions in North Korea, including Pyongyang. These diagnoses are useful for identifying the regions where revisions in the inventory are necessary, providing guidance for refinement of BC and CO emission rate estimates over East Asia.


2019 ◽  
Author(s):  
Yugo Kanaya ◽  
Kazuyo Yamaji ◽  
Takuma Miyakawa ◽  
Fumikazu Taketani ◽  
Chunmao Zhu ◽  
...  

Abstract. A long-term, robust observational record of atmospheric black carbon (BC) concentrations at Fukue Island for 2009–2019 was produced by unifying data from a continuous soot-monitoring system and a multi-angle absorption photometer. This record was then used to analyze emission trends from China. We identified a rapid reduction in BC concentrations of (−5.8 ± 1.5) % y−1 or −48 % from 2010 to 2018. We concluded that an emission change of (−5.3 ± 0.7) % y−1, related to changes in China of as much as −4.6 % y−1, was the main underlying driver. This evaluation was made after correcting for the interannual meteorological variability, by using regional atmospheric chemistry model simulations (WRF/CMAQ) with constant emissions. This resolves current fundamental disagreements about the sign of the BC emission trend from China over the past decade, assessed from bottom-up emission inventories; our analysis supported inventories reflecting the governmental clean air actions after 2010 (e.g., MEIC1.3, ECLIPSE v5a and v6b, and REAS updated) and recommended revision to those not (e.g., CEDS). Our estimated emission trends were fairly uniform over seasons but diverse among air-mass origins. Stronger BC reductions occurred in regions of South-Central East China, accompanied by CO emission reduction, while weaker BC reductions occurred in North-Central East China and Northeast China. Prior to 2017, the BC and CO emission trends were both unexpectedly positive in Northeast China during winter months, possibly influencing climate at higher latitudes. The pace of emission reduction over China surpasses those of SSP1 scenarios (SSP: shared socioeconomic pathways) for 2015–2030, suggesting highly successful emission control policies. At Fukue Island, the BC fraction of PM2.5 also steadily decreased over the last decade, suggesting that BC emission reduction started without significant delay with respect to other pollutants, such as NOx and SO2, which are among key precursors of scattering PM2.5.


2011 ◽  
Vol 20 (1) ◽  
pp. 96-148 ◽  
Author(s):  
A.I. Khalaim

Tersilochines of South, Southeast and East Asia (excluding Mongolia and Japan) have been studied. Eight genera and 60 species are recorded in the region: Allophrys (2 species), Barycnemis (5 species), Diaparsis (29 species), Phradis (2 species, including 1 unidentified species), Probles (12 species, including 1 unidentified and 6 undescribed species), Sathropterus (2 species), Slonopotamus gen. nov. (2 species) and Tersilochus (6 species, including one species of the obscure status). One genus and 26 species are described as new: Allophrys bruneiensis sp. nov. (Brunei), A. occipitata sp. nov. (Vietnam, India), Diaparsis absista sp. nov. (Brunei), D. bannapeana sp. nov. (Laos), D. bolikhamsaica sp. nov. (Laos, Thailand), D. brunnea sp. nov. (Brunei), D. crenulator sp. nov. (Brunei), D. dediticia sp. nov. (Vietnam, Brunei), D. hilaris sp. nov. (Vietnam), D. karnatakana sp. nov. (India), D. labiensis sp. nov. (Brunei), D. mandibulator sp. nov. (Laos), D. minuta sp. nov. (Vietnam), D. monstrosa sp. nov. (Brunei), D. morleyi sp. nov. (Sri Lanka), D. propodeator sp. nov. (Brunei, Sarawak State of Malaysia, southern Indonesia, Laos), D. pulchra sp. nov. (South Korea), D. sarawakiensis sp. nov. (Sarawak and Pahang states of Malaysia), D. viela sp. nov. (Vietnam, Laos), D. vietnamica sp. nov. (Vietnam), D. zispina sp. nov. (Vietnam), Probles vietnamica sp. nov. (Vietnam, probably East China and south of Far East of Russia), Sathropterus secundus sp. nov. (Vietnam), Slonopotamus elephantoides sp. nov. (Laos), S. indianus sp. nov. (India) and Tersilochus granulatus sp. nov. (South Korea). Generic assignment of two species are changed: Barycnemis sanctijohanni (Rao & Kurian, 1951), new combination, and Probles (Microdiaparsis) caudate (Morley, 1913), new combination. Barycnemis dissimilis and B. tobiasi from Nepal, Diaparsis convexa from Vietnam, D. niphadoctona from Laos, and Sathropterus pumilus from India and Nepal are newly recorded from the countries. The genus Diaparsis comprises almost half of species of the tersilochine fauna of the studied region (29 species, 48%), and is a dominant genus in the Oriental Region. Keys to genera and species of Tersilochinae of South, Southeast and East Asia (excluding Mongolia and Japan) are provided.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Sunmin Lee ◽  
Sung-Hwan Park ◽  
Moung-Jin Lee ◽  
Taejung Song

The social and economic harm to North Korea caused by water-related disasters is increasing with the increase in the disasters worldwide. Despite the improvement of inter-Korean relations in recent years, the issue of water-related disasters, which can directly affect the lives of people, has not been discussed. With consideration of inter-Korean relations, a government-wide technical plan should be established to reduce the damage caused by water-related disasters. Therefore, the purpose of this study was to identify remote sensing and GIS techniques that could be useful in reducing the damage caused by water-related disasters while considering inter-Korean relations and the disasters that occur in North Korea. To this end, based on the definitions of disasters in South and North Korea, water-related disasters that occurred during a 17-year period from 2001 to 2017 in North Korea were first summarized and reclassified into six types: typhoons, downpours, floods, landslides, heavy snowfalls, and droughts. In addition, remote sensing- and GIS-based techniques in South Korea that could be applied to water-related disasters in North Korea were investigated and reclassified according to applicability to the six disaster types. The results showed that remote sensing and other monitoring techniques using spatial information, GIS-based database construction, and integrated water-related disaster management have high priorities. Especially, the use of radar images, such as C band images, has proven essential. Moreover, case studies were analyzed within remote sensing- and GIS-based techniques that could be applicable to the water-related disasters that occur frequently in North Korea. Water disaster satellites with high-resolution C band synthetic aperture radar are scheduled to be launched by South Korea. These results provide basic data to support techniques and establish countermeasures to reduce the damage from water-related disasters in North Korea in the medium to long term.


2020 ◽  
Author(s):  
Yongjoo Choi ◽  
Yugo Kanaya ◽  
Masayuki Takigawa ◽  
Chunmao Zhu ◽  
Seung-Myung Park ◽  
...  

Abstract. Understanding the global distribution of atmospheric black carbon (BC) is essential to unveil its climatic effect. However, there are still large uncertainties regarding the simulation of BC transport due to inadequate information about the removal process. We accessed the wet removal rate of BC in East Asia based on long-term measurements over the 2010–2016 period at three representative background sites (Baengnyeong and Gosan in South Korea and Noto in Japan). The average wet removal rate, represented by transport efficiency (TE), i.e. the fraction of undeposited BC particles during transport, was estimated as 0.73 in East Asia from 2010 to 2016. According to accumulated precipitation along trajectory, TE was lower in East and North China, where the industrial sector (thin-coated) is dominant; in contrast, that in South Korea and Japan showed higher values due to the transport sector (thick-coated), with emissions mainly from diesel vehicles. By the same token, TE in winter and summer showed the highest and lowest values, respectively, depending on the dominant emission sectors, such as house heating (thick-coated) and industry. The average half-life and e-folding lifetime of BC were 2.8 and 7.1 days, respectively, similar to previous studies, but those values differed according to the geographical location and meteorological conditions of each site. Next, by comparing TE from the FLEXible PARTicle (FLEXPART) Lagrangian transport model (version 10.4), we diagnosed the scavenging coefficients (s−1) of the below- and in-cloud scavenging scheme implemented in FLEXPART. The overall median TE from FLEXPART (0.91) was overestimated compared to the measured value, implying underestimation of wet scavenging coefficients in the model simulation. The median of the below-cloud scavenging coefficient showed a lower value than that calculated from FLEXPART, by a factor of 1.7. On the other hand, the overall median of the FLEXPART in-cloud scavenging coefficients was highly underestimated by 1 order of magnitude compared to the measured value. From the analysis of artificial neural networks, the convective available potential energy, which is well known as an indicator of vertical instability, should be considered in the in-cloud scavenging process to improve the representative regional difference in BC wet scavenging over East Asia. For the first time, this study suggested an effective and straightforward evaluation method for wet scavenging schemes (both below- and in-cloud) by introducing TE along with excluding effects from the inaccurate emission inventories.


2011 ◽  
Vol 116 (D16) ◽  
Author(s):  
Y. Kondo ◽  
N. Oshima ◽  
M. Kajino ◽  
R. Mikami ◽  
N. Moteki ◽  
...  

2020 ◽  
Author(s):  
Minkwang Cho ◽  
Hyun Mee Kim

<p> In this study, surface carbon dioxide (CO<sub>2</sub>) flux was estimated over East Asia using the inverse modeling approach. Two CO<sub>2</sub> mole fraction datasets observed from South Korea (Anmyeon-do (AMY) and Gosan (GSN)), along with ObsPack observation data package, were additionally assimilated in the CarbonTracker system, and the characteristics of the estimated surface CO<sub>2</sub> flux was analyzed over ten years. To see the impact of the inclusion of the two observation datasets in the Korean Peninsula, the other experiment which only assimilated the ObsPack data was conducted and used for comparison.</p><p> The result showed that by including two more datasets in the data assimilation process, the surface CO<sub>2</sub> flux absorption was slightly enhanced in summer and the surface CO<sub>2</sub> flux emission was weakened in late autumn and spring. This characteristic was shown particularly in Eurasian boreal and Eurasian temperate regions. Validation was done using independent observations from surface and aircraft (Comprehensive Observation Network for Trace gases by Airliner; CONTRAIL), and it showed smaller root mean square error (RMSE) values and bigger uncertainty reduction effect with the experiment which additionally assimilated two Korean observation datasets.</p><p> Meanwhile, the estimated biosphere CO<sub>2</sub> flux from the CarbonTracker was compared with Land Use, Land Use Change and Forest (LULUCF) sector CO<sub>2</sub> emission (or absorption) from the national greenhouse gases emission inventory (NIR). In case of South Korea, the observation density (number of observation sites or number of assimilated data on the area of the region) seemed to be related to some statistic parameters between inventory and CarbonTracker result. More results from model-inventory comparison using other data will be presented in the meeting.</p><p> </p><p><strong>Acknowledgements</strong></p><p> This study was supported by the Korea Meteorological Administration Research and Development Program under grant KMI2018-03712 and a National Research Foundation of Korea (NRF) grant funded by the South Korean government (Ministry of Science and ICT) (Grant 2017R1E1A1A03070968). The authors thank Andrew R. Jacobson for providing the CarbonTracker used for this study.</p>


2017 ◽  
Author(s):  
Qingfeng Guo ◽  
Min Hu ◽  
Song Guo ◽  
Zhijun Wu ◽  
Jianfei Peng ◽  
...  

Abstract. East Asia is a densely populated region with a myriad of primary emissions of pollutants such as black carbon (BC) and carbon monoxide (CO). To characterize primary emissions over the eastern coast of China, a cascade of field campaign was conducted in 2011, including the measurement of ship cruise, island, and coastal receptor sites. The relationship between BC and CO is presented here for the first ship cruise (C1), the second ship cruise (C2), an island site (Changdao Island, CD), and a coastal site (Wenling, WL). The average BC mass concentrations are 2.43, 2.73, 1.09, 0.94, and 0.77 µg·m−3 for CD, WL, C1-YS (Yellow Sea), C1-ES (East China Sea), and C2-ES, respectively. For those locations, the average CO mixing ratios are 0.55, 0.48, 0.31, 0.36, and 0.27 ppm. The high loadings of both BC and CO imply the severe anthropogenic pollution over the eastern coast of China. Additionally, the linear correlation between BC and CO is regressed for each location. The slopes, i.e. ∆BC/∆CO ratios derived from their relationships are correlated well with the ratios of diesel consumption to gasoline consumption in each province/city, which reveals the vehicular emission as the common source for BC and CO and the distinct fuel structures between North and South China. The ∆BC/∆CO ratios at coastal sites (Changdao Island and Wenling) are much higher than those over Yellow Sea and East China Sea, and the correlation coefficients also show a decreasing trend from the coast to the sea. Therefore, the ∆BC/∆CO ratio and correlation coefficient are possible indicators for the aging and removal of BC.


Sign in / Sign up

Export Citation Format

Share Document