scholarly journals Black carbon and mineral dust in snow cover on the Tibetan Plateau

2018 ◽  
Vol 12 (2) ◽  
pp. 413-431 ◽  
Author(s):  
Yulan Zhang ◽  
Shichang Kang ◽  
Michael Sprenger ◽  
Zhiyuan Cong ◽  
Tanguang Gao ◽  
...  

Abstract. Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g−1, 491 to 13 880 ng g−1, and 22 to 846 µg g−1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ∼ 50 % in the southern TP to ∼ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

2017 ◽  
Author(s):  
Yulan Zhang ◽  
Shichang Kang ◽  
Michael Sprenger ◽  
Zhiyuan Cong ◽  
Tanguang Gao ◽  
...  

Abstract. Light-absorbing impurities (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow cover and ice. This study found that the black carbon, organic carbon, and dust concentrations in snow cover ranged generally from 202–17 468 ng g−1, 491–13 880 ng g−1, and 22–846 µg g−1, respectively, with higher concentrations in the central to northern areas of the Third Pole region (referred to by scientists also as the Tibetan Plateau and its surrounding mountains). Footprint analyses suggested that the northern Third Pole was influenced mainly by air masses from Central Asia with some Euro-Asia influence; air masses in the central and Himalayan region originated mainly from Central and South Asia. The open burning-sourced black carbon contributions decreased from ~ 50 % in the southern Third Pole region to ~ 30 % in the northern Third Pole region. The contribution of black carbon and dust to snow albedo reduction reached approximately 37 % and 15 %, respectively. The effect of black carbon and dust reduced the average snow cover duration by 3.1 ± 0.1 days to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had an import implication for snowmelt water loss over the Third Pole region. Findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.


2016 ◽  
Vol 16 (3) ◽  
pp. 1303-1315 ◽  
Author(s):  
Y. Xu ◽  
V. Ramanathan ◽  
W. M. Washington

Abstract. Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5 °C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At the Tibetan Plateau altitudes, the increase in atmospheric CO2 concentration exerted a warming of 1.7 °C, BC 1.3 °C where as cooling aerosols cause about 0.7 °C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.


2015 ◽  
Vol 15 (13) ◽  
pp. 19079-19109 ◽  
Author(s):  
Y. Xu ◽  
V. Ramanathan ◽  
W. M. Washington

Abstract. Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In-situ observations of snow cover fraction since the 1960s suggest that the snow pack in the region have retreated significantly, accompanied by a surface warming of 2–2.5 °C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover fraction to various anthropogenic factors. At the Tibetan Plateau altitudes, the increase of atmospheric CO2 concentration exerted a warming of 1.7 °C, BC 1.3 °C where as cooling aerosols cause about 0.7 °C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. Especially, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow are coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.


2016 ◽  
Author(s):  
Yang Li ◽  
Jizu Chen ◽  
Shichang Kang ◽  
Chaoliu Li ◽  
Bin Qu ◽  
...  

Abstract. Black carbon (BC) and mineral dust (MD), the most important compositions of light absorbing particles (LAPs), significantly reduce the albedo of glaciers and thus accelerate their melting. In order to investigate the impacts of BC and MD on the glacier radiation balance and ablation, a total of 92 surface snow/ice samples were collected along different elevations from 4300–4950 m a.s.l. on Laohugou glacier No. 12 (LHG, 39°10'–35' N, 96°10'–35' E), located at Qilian Mountains, northeastern margin of the Tibetan Plateau (TP), during summer of 2013 and 2014. A thermal-optical method was employed to detect the BC (EC – element carbon) concentrations in snow/ice samples. The results showed that BC and MD concentrations were much lower in snow than those in ice, and gradually declined with increasing elevation. The effects of BC and MD on albedo reduction at different melting conditions were identified with the SNow ICe Aerosol Radiative (SNICAR) model initiated by in-situ observation data. The sensitivity analysis showed that BC had a stronger impact on albedo reduction than MD on this glacier. The impacts of BC represented around 45 % of albedo reduction while the contribution of MD was 35 % when the glacier surface presented as superimposed ice and experienced intensive melting. During summer, when the surface was covered by snow, BC and MD contributed for 15 % and 9 % respectively. On average, the radiative forcing (RF) caused by BC in the snow/ice, more than MD, was 41.6 ± 37.0 W m−2. Meanwhile, compared to glacier melting in summer of 2013 and 2014 (409 mm w.e. and 366 mm w.e., respectively) calculated using the surface energy-mass balance model, contributions of BC and MD were less than 37 % and 32 % respectively of summer melting, while MD and BC together contributed a maximum of 61 %. This study provided the baseline information on BC and MD concentrations in glaciers of the northeastern TP and their contributions in glacier melting during summer.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 161
Author(s):  
Liheng Lu ◽  
Xiaoqian Shen ◽  
Ruyin Cao

The Tibetan Plateau, the highest plateau in the world, has experienced strong climate warming during the last few decades. The greater increase of temperature at higher elevations may have strong impacts on the vertical movement of vegetation activities on the plateau. Although satellite-based observations have explored this issue, these observations were normally provided by the coarse satellite data with a spatial resolution of more than hundreds of meters (e.g., GIMMS and MODIS), which could lead to serious mixed-pixel effects in the analyses. In this study, we employed the medium-spatial-resolution Landsat NDVI data (30 m) during 1990–2019 and investigated the relationship between temperature and the elevation-dependent vegetation changes in six mountainous regions on the Tibetan Plateau. Particularly, we focused on the elevational movement of the vegetation greenness isoline to clarify whether the vegetation greenness isoline moves upward during the past three decades because of climate warming. Results show that vegetation greening occurred in all six mountainous regions during the last three decades. Increasing temperatures caused the upward movement of greenness isoline at the middle and high elevations (>4000 m) but led to the downward movement at lower elevations for the six mountainous regions except for Nyainqentanglha. Furthermore, the temperature sensitivity of greenness isoline movement changes from the positive value to negative value by decreasing elevations, suggesting that vegetation growth on the plateau is strongly regulated by other factors such as water availability. As a result, the greenness isoline showed upward movement with the increase of temperature for about 59% pixels. Moreover, the greenness isoline movement increased with the slope angles over the six mountainous regions, suggesting the influence of terrain effects on the vegetation activities. Our analyses improve understandings of the diverse response of elevation-dependent vegetation activities on the Tibetan Plateau.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181295 ◽  
Author(s):  
Bin Qu ◽  
Mika Sillanpää ◽  
Chaoliu Li ◽  
Shichang Kang ◽  
Aron Stubbins ◽  
...  

2015 ◽  
Vol 15 (11) ◽  
pp. 6007-6021 ◽  
Author(s):  
Z. L. Lüthi ◽  
B. Škerlak ◽  
S.-W. Kim ◽  
A. Lauer ◽  
A. Mues ◽  
...  

Abstract. The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines ground-based and satellite remote sensing data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13–19 March 2009 (pre-monsoon). Trajectory calculations based on the high-resolution numerical weather prediction model COSMO are used to locate the source regions and study the mechanisms of pollution transport in the complex topography of the HTP. We detail how polluted air masses from an atmospheric brown cloud (ABC) over South Asia reach the Tibetan Plateau within a few days. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic-scale and local meteorological processes. During the days prior to the event, winds over the Indo-Gangetic Plain (IGP) are generally weak at lower levels, allowing for accumulation of pollutants and thus the formation of ABCs. The subsequent passing of synoptic-scale troughs leads to southwesterly flow in the middle troposphere over northern and central India, carrying the polluted air masses across the Himalayas. As the IGP is known to be a hotspot of ABCs, the cross-Himalayan transport of polluted air masses may have serious implications for the cryosphere in the HTP and impact climate on regional to global scales. Since the current study focuses on one particularly strong pollution episode, quantifying the frequency and magnitude of similar events in a climatological study is required to assess the total impact.


Sign in / Sign up

Export Citation Format

Share Document