scholarly journals Impact of COVID19 restrictions on organic micropollutants in wastewater treatment plants and human consumption rates

Author(s):  
Camilla Di Marcantonio ◽  
Agostina Chiavola ◽  
Valentina Gioia ◽  
Alessandro Frugis ◽  
Giancarlo Cecchini ◽  
...  
Author(s):  
Alex Neumann

The increased use of Pharmaceuticals and Personal Care Products (PPCP’s) has led to an increase in many population health problems. In 1997, 15–50 % of women had developed breasts by the age of 8. Ten years prior to this, breast development by the age of 8 was uncommon. There are certain researchers who believe that this may be linked to the pharmaceuticals humans are consuming.Wastewater treatment plants are a significant gateway by which pharmaceuticals enter the water supply. Many pharmaceuticals find themselves in wastewater treatment plants, however the plants do not target these specific chemicals for treatment. As a result, they are released into the surrounding bodies of water, and accumulate in aquatic animals. When water treatment plants take water from the bodies of water and distribute it for human consumption, humans consume these chemicals.Many techniques for removing the pharmaceuticals have been tested, but there is still much uncertainty as to which are effective methods. The potential hazards associated with these chemicals are still uncertain, but the current evidence is indicating that it is very likely that these chemicals can be very hazardous.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3599 ◽  
Author(s):  
Oliver Gretzschel ◽  
Michael Schäfer ◽  
Heidrun Steinmetz ◽  
Erich Pick ◽  
Kim Kanitz ◽  
...  

To achieve the Paris climate protection goals there is an urgent need for action in the energy sector. Innovative concepts in the fields of short-term flexibility, long-term energy storage and energy conversion are required to defossilize all sectors by 2040. Water management is already involved in this field with biogas production and power generation and partly with using flexibility options. However, further steps are possible. Additionally, from a water management perspective, the elimination of organic micropollutants (OMP) is increasingly important. In this feasibility study a concept is presented, reacting to energy surplus and deficits from the energy grid and thus providing the needed long-term storage in combination with the elimination of OMP in municipal wastewater treatment plants (WWTPs). The concept is based on the operation of an electrolyzer, driven by local power production on the plant (photovoltaic (PV), combined heat and power plant (CHP)-units) as well as renewable energy from the grid (to offer system service: automatic frequency restoration reserve (aFRR)), to produce hydrogen and oxygen. Hydrogen is fed into the local gas grid and oxygen used for micropollutant removal via upgrading it to ozone. The feasibility of such a concept was examined for the WWTP in Mainz (Germany). It has been shown that despite partially unfavorable boundary conditions concerning renewable surplus energy in the grid, implementing electrolysis operated with regenerative energy in combination with micropollutant removal using ozonation and activated carbon filter is a reasonable and sustainable option for both, the climate and water protection.


2020 ◽  
Vol 141 ◽  
pp. 61-72 ◽  
Author(s):  
Camilla Di Marcantonio ◽  
Agostina Chiavola ◽  
Simona Dossi ◽  
Giancarlo Cecchini ◽  
Simone Leoni ◽  
...  

2015 ◽  
Vol 73 (3) ◽  
pp. 607-616 ◽  
Author(s):  
Frank Kirschhöfer ◽  
Olga Sahin ◽  
Gero C. Becker ◽  
Florian Meffert ◽  
Michael Nusser ◽  
...  

Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m−3) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.


2021 ◽  
Vol 11 (22) ◽  
pp. 10853
Author(s):  
Pablo Viveros ◽  
Leonardo Miqueles ◽  
Rodrigo Mena ◽  
Fredy Kristjanpoller

Wastewater treatment plants (WWTPs) face two fundamental challenges: on the one hand, they must ensure an efficient application of preventive maintenance plans for their survival under competitive environments; and on the other hand, they must simultaneously comply with the requirements of reliability, maintainability, and safety of their operations, ensuring environmental care and the quality of their effluents for human consumption. In this sense, this article seeks to propose a cost-efficient alternative for the execution of preventive maintenance (PM) plans through the formulation and optimization of the opportunistic grouping strategy with time-window tolerances and non-negligible execution times. The proposed framework is applied to a PM plan for critical high-risk activities, addressing primary treatment and anaerobic sludge treatment process in a wastewater treatment plant. Results show a 26% system inefficiency reduction versus the initial maintenance plan, demonstrating the capacity of the framework to increase the availability of the assets and reduce maintenance interruptions of the WWTP under analysis.


2006 ◽  
Vol 40 (19) ◽  
pp. 3559-3570 ◽  
Author(s):  
Christian Vogelsang ◽  
Merete Grung ◽  
Tor Gunnar Jantsch ◽  
Knut Erik Tollefsen ◽  
Helge Liltved

2003 ◽  
Vol 69 (6) ◽  
pp. 3393-3398 ◽  
Author(s):  
Simone M. Cacci� ◽  
Marzia De Giacomo ◽  
Francesca A. Aulicino ◽  
Edoardo Pozio

ABSTRACT Reductions in annual rainfall in some regions and increased human consumption have caused a shortage of water resources at the global level. The recycling of treated wastewaters has been suggested for certain domestic, industrial, and agricultural activities. The importance of microbiological and parasitological criteria for recycled water has been repeatedly emphasized. Among water-borne pathogens, protozoa of the genera Giardia and Cryptosporidium are known to be highly resistant to water treatment procedures and to cause outbreaks through contaminated raw or treated water. We conducted an investigation in four wastewater treatment plants in Italy by sampling wastewater at each stage of the treatment process over the course of 1 year. The presence of the parasites was assessed by immunofluorescence with monoclonal antibodies. While Cryptosporidium oocysts were rarely observed, Giardia cysts were detected in all samples throughout the year, with peaks observed in autumn and winter. The overall removal efficiency of cysts in the treatment plants ranged from 87.0 to 98.4%. The removal efficiency in the number of cysts was significantly higher when the secondary treatment consisted of active oxidation with O2 and sedimentation instead of activated sludge and sedimentation (94.5% versus 72.1 to 88.0%; P = 0.05, analysis of variance). To characterize the cysts at the molecular level, the β-giardin gene was PCR amplified, and the products were sequenced or analyzed by restriction. Cysts were typed as assemblage A or B, both of which are human pathogens, stressing the potential risk associated with the reuse of wastewater.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2294
Author(s):  
Giovanni Luongo ◽  
Lucio Previtera ◽  
Afef Ladhari ◽  
Giovanni Di Fabio ◽  
Armando Zarrelli

Numerous substances from different chemical sectors, from the pharmaceutical industry to the many consumer products available for everyday usage, can find their way into water intended for human consumption and wastewater, and can have adverse effects on the environment and human health. Thus, the disinfection process is an essential stage in water and wastewater treatment plants to destroy pathogenic microorganisms but it can form degradation byproducts. Sodium hypochlorite is the most common disinfectant, but the most important drawback associated with this kind of compound is the generation of toxic disinfection byproducts. Many studies have been carried out to identify alternative disinfectants, and in the last few years, peracetic acid has been highlighted as a feasible solution, particularly in wastewater treatment. This study compares the transformations of five emerging pollutants (caffeine, tramadol, irbesartan, diclofenac, trazodone) treated with peracetic acid, to evaluate their degradation and the possible formation of byproducts with those obtained with sodium hypochlorite. Although peracetic acid has many advantages, including a wide field of use against microorganisms and a low toxicity towards animal and plant organisms, it is not as effective in the degradation of the considered pollutants. These ones are recovered substantially and are unchanged quantitatively, producing a very low number of byproducts.


Author(s):  
Burkhard Teichgräber ◽  
Peter Jagemann ◽  
Martin Hetschel ◽  
Antje Bechtel ◽  
Linh-Con Phan

Abstract A technical feasibility study was carried out at the wastewater treatment plant (WWTP) Hamm-West in 2018, which included preliminary planning for the improvement of the plant, using different advanced wastewater technologies. The results of the technical feasibility study show that the application of activated carbon or ozone, in combination with an additional filtration system, can not only remove organic micropollutants efficiently but can also significantly improve the quality of other standard parameters in the WWTP effluent. This technical feasibility study, along with seven other studies, is part of the module-based approach the Emschergenossenschaft and Lippeverband (EGLV) is pursuing in order to improve wastewater treatment plants with advanced treatment systems. Finally, the module-based approach can be used to pair the most suitable WWTPs with the best applicable technologies to improve the treatment process in the whole Lippe catchment area.


Sign in / Sign up

Export Citation Format

Share Document