Exploring kinetics, removal mechanism and possible transformation products of tigecycline by Chlorella pyrenoidosa

Author(s):  
Xueqing Zhong ◽  
Xiangxiang Zhang ◽  
Tianyi Zhou ◽  
Guangping Lv ◽  
Quanyu Zhao
2020 ◽  
Vol 68 (7) ◽  
pp. 1966-1973 ◽  
Author(s):  
Jing Gao ◽  
Fang Wang ◽  
Wenqi Jiang ◽  
Jiajun Han ◽  
Peng Wang ◽  
...  

Author(s):  
R. Varughese ◽  
S. W. Thompson ◽  
P. R. Howell

Ever since Habraken and Economopoulos first employed the term granular bainite to classify certain unconventional transformation products in continuously cooled steels, the term has been widely accepted and used, despite the lack of a clear consensus as to the detailed nature of the transformation products which constitute granular bainite. This paper presents the preliminary results of a TEM investigation of an 0.04 wt% C, copper-containing steel (designated HSLA-100). It is suggested that the term granular ferrite rather than granular bainite is a more accurate description of this multiphase reaction product.Figure 1 is a light micrograph of a sample which had been air-cooled from 900°C to room temperature. The microstructure is typical of that which has been termed granular bainite in the past and appears to consist of equiaxed ferritic grains together with other minor transformation products. In order to examine these structures in more detail, both continuously cooled and isothermally transformed and quenched materials have been examined with TEM. Granular bainite has been found in virtually all samples.


1997 ◽  
Vol 35 (8) ◽  
pp. 83-90
Author(s):  
Shigeo Fujii ◽  
Chiaki Niwa ◽  
Mitsuo Mouri ◽  
Ranjna Jindal

Applicability of the rock-bed filtration technique was investigated through pilot-plant experiments in Bangkok, Thailand. Polluted canal water was used as horizontal flow influent to two reactor channels filled with rocks. During one year operation, HRT, filter media, and aeration mode, were changed in several runs. The results showed that 1) the rock-bed filtration with aeration and the HRT more than 6 h can successfully improve polluted klong water by reducing the pollutants (e.g. 60-120mg/L of SS to 20-40 mg/L and 15-30 mg/L of BOD to 5-20 mg/L); 2) main removal mechanism seems to be the sedimentation resulting from the settleability enhanced by aeration, and the biofilm attached onto rocks also works in the reduction of soluble organic matter; 3) a combination of three rock sizes arranged in descending order showed best results; 4) longer HRT (13 h) produces better effluent but is not so effective if it exceeds 9 hours; 5) 60-70% of sediment IL was decomposed in a year, and porosity in rock beds reduced approximately 16%.


1999 ◽  
Vol 39 (6) ◽  
pp. 191-198 ◽  
Author(s):  
Timothy J. Hurse ◽  
Michael A. Connor

In an attempt to gain a better understanding of ammonia and nitrogen removal processes in multi-pond wastewater treatment lagoons, an analysis was carried out of data obtained during regular monitoring of Lagoon 115E at the Western Treatment Plant in Melbourne. To do this, a contour plot approach was developed that enables the data to be displayed as a function of pond number and date. Superimposition of contour plots for different parameters enabled the dependence of ammonia and nitrogen removal rates on various lagoon characteristics to be readily assessed. The importance of nitrification as an ammonia removal mechanism was confirmed. Temperature, dissolved oxygen concentration and algal concentration all had a significant influence on whether or not sizeable nitrifier populations developed and persisted in lagoon waters. The analysis made it evident that a better understanding of microbial, chemical and physical processes in lagoons is needed before their nitrogen removal capabilities can be predicted with confidence.


Toxics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Kamila Šrédlová ◽  
Kateřina Šírová ◽  
Tatiana Stella ◽  
Tomáš Cajthaml

Metabolites of polychlorinated biphenyls (PCBs)—hydroxylated PCBs (OH‑PCBs), chlorobenzyl alcohols (CB‑OHs), and chlorobenzaldehydes (CB‑CHOs)—were incubated in vitro with the extracellular liquid of Pleurotus ostreatus, which contains mainly laccase and low manganese-dependent peroxidase (MnP) activity. The enzymes were able to decrease the amount of most of the tested OH‑PCBs by > 80% within 1 h; the removal of more recalcitrant OH‑PCBs was greatly enhanced by the addition of the laccase mediator syringaldehyde. Conversely, glutathione substantially hindered the reaction, suggesting that it acted as a laccase inhibitor. Hydroxylated dibenzofuran and chlorobenzoic acid were identified as transformation products of OH‑PCBs. The extracellular enzymes also oxidized the CB‑OHs to the corresponding CB‑CHOs on the order of hours to days; however, the mediated and nonmediated setups exhibited only slight differences, and the participating enzymes could not be determined. When CB‑CHOs were used as the substrates, only partial transformation was observed. In an additional experiment, the extracellular liquid of Irpex lacteus, which contains predominantly MnP, was able to efficiently transform CB‑CHOs with the aid of glutathione; mono‑ and di-chloroacetophenones were detected as transformation products. These results demonstrate that extracellular enzymes of ligninolytic fungi can act on a wide range of PCB metabolites, emphasizing their potential for bioremediation.


Sign in / Sign up

Export Citation Format

Share Document