Depth filtration using novel fiber-ball filter media for the treatment of high-turbidity surface water

2012 ◽  
Vol 95 ◽  
pp. 32-38 ◽  
Author(s):  
Pin Gao ◽  
Gang Xue ◽  
Xin-shan Song ◽  
Zhen-hong Liu
Respuestas ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 170-176
Author(s):  
Saúl David Buelvas-Caro ◽  
Yelitza del Rosario Aguas-Mendoza ◽  
Rafael Enrique Olivero-Verbel

Biocoagulants have emerged as an environmentally friendly and efficient alternative to surface water clarification, allowing the use of agro-industrial waste as a bioavailable source for the treatment of high turbidity water. The objective of this research was to compare the efficiency in the surface water coagulation process of the Magdalena river using aluminum sulfate and tamarind seeds (Tamarindus indica) dissolved in aqueous solution and saline solution. The clarification process was carried out by testing jar, for this was performed an extraction of the hot and cold tamarind coagulant which were evaluated in conjunction with an inorganic coagulant in different mother dilutions (distilled water and saline) at concentrations of 35 and 40 mg/L and at a stirring speed of 100 and 200 rpm. The parameters of pH, electrical conductivity (S/cm), turbidity (NTU) and color (UPC) were measured during the clarification process. The results show a 97.2% reduction in inorganic treatment (SAL) compared to initial turbidity and a decrease in natural cold extracted (STF) and hot (STC) treatments of 58.2% and 39.1% respectively, when diluted in aqueous solution. While diluting in saline solution there was a greater removal of turbidity when applying aluminum sulfate, followed by STF and STC treatment, with removal values of 99%, 75% and 53% respectively. The highest coagulating activity occurred when applying a dose of 40mg/L and when diluting treatments in NaCl with maximum reported values for SAL, STF and STC treatment of 93%, 85% and 59%. Tamarind seeds proved to be an efficient coagulant for water clarification


2021 ◽  
Vol 43 (3) ◽  
pp. 146-159
Author(s):  
Junho Lee ◽  
Daesik Song

Objectives : The objective of this study is to investigate the performance of the fiber-ball media upflow filtration system for non-point pollutants treatment.Methods : The additional air backwashing nozzle were installed between upper and lower fliter media cartridge. The effect of feed SS concentration, surface overflow rate, retention time, head loss on the removal efficiency were investigated respectively. Particle size distribution, SEM, and backwashing effect were also analyzed.Results and Discussion : The operated of upflow filter mean retention time, mean head loss were 1.99 min, 7.2 cm. On condition of SOR 480 m3/m2/day, results indicate that the range of removal efficiency of turbidity and SS were 76.8 ~ 93.21% (mean 88.3%) and 85.4 ~ 97.9% (mean 92.7%), respectively. The effluent turbidity and SS were under 15 NTU, 20 mg/L, respectively.Conclusions : Since turbidity can be continuously monitored in a filtration non-point pollution treatment system, turbidity can be used as a operation factor in evaluating operating conditions. The particle size the effluent larger than the influent was due to bonding, collision and adsorption between particles in the pores of the filter media. SEM analysis showed that after backwashing, very fine particles in the filter medium were not removed but adhered to the fiber yarn and remained. The average recovery rate of fiber-ball media filtration was 88.7%, which is evaluated as excellent in backwashing.


2013 ◽  
Vol 13 (2) ◽  
pp. 413-419 ◽  
Author(s):  
Zahiruddin Khan ◽  
Muhammad Sajid Riaz ◽  
Ishtiaq A. Qaqzi

In this work, a multi-compartment, horizontal flow roughing filter (HRF) was designed, constructed and operated to evaluate its effectiveness against high turbidity surface water with and without coagulation. The objective was to evaluate the efficacy of the HRF in removing turbidity, total organic carbon (TOC), total coliform and particulate matter. The HRF was operated at filtration rates of 1.3, 1.0 and 0.7 m/hr. At 0.7 m/hr, plain HRF (PRF) reduced turbidity by 35%, TOC by 31%, coliform by 90% and particles with average diameter >4 μm. For coagulated roughing filtration (CRF), the optimum alum dose of 110 mg/L (L100) was determined using jar tests. In-line, CRF of the raw water using 25% (L25) and 50% (L50) of L100 reduced turbidity by 87 and 98%, respectively. TOC removal at L50 was 41% and total coliform removal up to 99%. CRF was more effective in removing particles with average diameter >1 μm. CRF did not only help attenuating the turbidity shock loads but also consistently produced high quality effluent of 5–10 NTU at 55 mg/L vs 176 mg/L used by the plant. Over 98% reduction in coliform and removal of most particles of >1 μm diameter demonstrated that CRF would also be effective in removal of protozoa such as Giardia.


Author(s):  
Kai Wei ◽  
Heidi L. Cossey ◽  
Ania C. Ulrich

AbstractSurface mining of oil sands ore in Alberta, Canada has generated fluid fine tailings (FFT) that must be reclaimed. End pit lakes (EPLs), which consist of thick deposits of FFT capped with water, have been proposed for FFT reclamation, and Base Mine Lake (BML) is the first full-scale demonstration EPL. However, FFT particle settling and resuspension contributes to high turbidity in the BML water cap, which may be detrimental to the development of an aquatic ecosystem. This study investigated the effect of Ca and Al treatments on turbidity mitigation. The initial turbidity was reduced from 20 NTU to less than 2 NTU in BML surface water treated with 54 mg/L of Ca or 1.1 mg/L of Al. At a concentration of 1.1 mg/L, Al reduced the initial turbidity to a greater extent, and in a shorter time, than 54 mg/L of Ca. Further, resuspended Al-treated FFT particles were 100–700 nm larger in diameter, and thus resettled faster than the resuspended untreated or Ca-treated FFT particles. The final turbidity values 21 days after resuspension of untreated and 1.7 mg/L Al-treated FFT particles in fresh BML surface water were 20.5 NTU and 2.5 NTU, respectively. Thus, Al treatment may be effective in mitigating turbidity in BML through both Al-induced coagulation and self-weight settling of the resuspended Al-treated FFT particles.


2002 ◽  
Vol 48 (6) ◽  
pp. 542-549 ◽  
Author(s):  
Ryan C Kuhn ◽  
Kevin H Oshima

An optimized hollow-fiber ultrafiltration system (50 000 MWCO) was developed to concentrate Cryptosporidium oocysts from 10-L samples of environmental water. Seeded experiments were conducted using a number of surface-water samples from the southwestern U.S.A. and source water from four water districts with histories of poor oocyst recovery. Ultrafiltration produced a mean recovery of 47.9% from 19 water samples (55.3% from 39 individual tests). We also compared oocyst recoveries using the hollow-fiber ultrafiltration system with those using the Envirochek filter. In limited comparison tests, the hollow-fiber ultrafiltration system produced recoveries similar to those of the Envirochek filter (hollow fiber, 74.1% (SD = 2.8); Envirochek, 71.9% (SD = 5.2)) in low-turbidity (3.9 NTU) samples and performed better than the Envirochek filter in high-turbidity (159.0 NTU) samples (hollow fiber, 27.5%; Envirochek, 0.4%). These results indicate that hollow-fiber ultrafiltration can efficiently recover oocysts from a wide variety of surface waters and may be a cost-effective alternative for concentrating Cryptosporidium from water, given the reusable nature of the filter.Key words: Cryptosporidium, ultrafiltration, oocyst.


Author(s):  
Xingcheng Liu ◽  
Henggen Shen ◽  
Xueli Nie

The main objective of this study was to determine the effect of filter pore size and fiber diameter on the performance of the baghouse filters for ultra-low emission. In this study, three kinds of conventional polyester filter (depth filtration media) and two kinds of polytetrafluoroethylene membrane-coated polyester filter (surface filtration media), having various filter pore sizes and fiber diameters, were tested to determine the performance of static and dynamic filtration. In order to determine the static filtration performance, the filtration resistance and the filtration efficiency of the clean filter media were measured by the arrestance method. The dynamic filtration performance experiments were conducted to determine the dynamic resistances, dust depositions, and dynamic filtration efficiencies of the dust-containing filter media under the condition of dust airflow filtration through a pulse-cleaning cycle. In the dynamic filtration performance experiments, the size of 50% test dust was less than 2.5 μm, and the mass mean aerodynamic diameter of the dust was 1.5 μm. The filtration velocity was 2 m∙min−1, and the dust concentration was 18.4 g∙m−3. The static filtration performance experiments showed that the filter pore size greatly affected the filtration resistance and the filtration efficiency of the fabric structure of the surface filtration media. In the depth filtration media, the filtration efficiency and the filtration resistance of the fabric structure were improved when the filter pore size and the fiber diameter were smaller in magnitude. For all the five filter media, smaller the pore size of the filter media, greater was the filtration precision (for fine particles, such as PM2.5) of the fabric structure. In the dynamic filtration performance experiments, the filter pore size and the fiber diameter of the depth filtration media affected the dynamic filtration resistance and the dynamic filtration efficiency of the depth filtration media by affecting the deposition rate of dust in the depth filtration media; however, the filter pore size of the surface filtration media affected the blocking rate of dust in the membrane micropores, thus influencing the dynamic filtration resistance and the dynamic filtration efficiency of the surface filtration media.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 325-330 ◽  
Author(s):  
M.A. Thompson

Membrane filtration processes have become widely used for low turbidity water sources that require particle removal and disinfection. In cases where the feed water contains high turbidity levels or high fouling tendencies, pre-treatment has been required to allow the membranes to operate efficiently. Submersion membranes have allowed direct treatment on many of these water supplies but operate under vacuum. This presents limitations on operating flux and design conditions for incorporating into existing facilities. The treatment unit designs are also very expensive to implement for small water treatment applications. A recently developed pressure driven ultrafiltration (UF) membrane is being tested on several different water sources and has demonstrated exceptional operation on high turbidity feed water sources. The module design includes a single potted end with the membrane fibers looped on the bottom to allow draining of solids from the module. The UF membrane filters outside to inside and has been operated on feed water turbidity levels up to 200 ntu. The availability of a pressure driven hollow fiber membrane that can efficiently filter high suspended solids water sources can provide a cost effective solution for many small to medium sized water supplies. Conditioning the feed water with a coagulant or direct filtration of high turbidity feed water can be used depending on the organic material present without settling or other clarification process. This eliminates the need for additional structural pretreatment and reduces overall system cost and size. Current limitations include the module size that makes this cost prohibitive for very large systems. Larger membrane systems where high-suspended solids are present in the feed water have been utilizing immersion membrane technologies more and more over the past few years. These systems typically operate under a vacuum and can be used for large water treatment plants as their design allows large filtration modules such as Memcor's CMFS filter block at 880 m3/hr. This allows significant capital cost reductions and allows membrane filtration to be competitive to conventional filtration technologies for virtually all filtration applications. This paper will review the economics and performance of both pressure driven and immersion membrane systems for small to large water supply systems on feed water containing high-suspended solid levels. Actual testing data for the new pressure driven hollow fiber UF membrane and immersion membrane systems will be provided on different water supplies including unconditioned surface water, filter backwash water and coagulated surface water.


2012 ◽  
Vol 79 (1) ◽  
pp. 215-223 ◽  
Author(s):  
Jennifer L. Cashdollar ◽  
Nichole E. Brinkman ◽  
Shannon M. Griffin ◽  
Brian R. McMinn ◽  
Eric R. Rhodes ◽  
...  

ABSTRACTThe U.S. EPA developed a sample concentration and preparation assay in conjunction with the total culturable virus assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule (ICR) promulgated in 1996. In an effort to improve upon this method, the U.S. EPA recently developed Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Method 1615 uses a culturable virus assay with reduced equipment and labor costs compared to the costs associated with the ICR virus method and introduces a new molecular assay for the detection of enteroviruses and noroviruses by reverse transcription-quantitative PCR. In this study, we describe the optimization of several new components of the molecular assay and examine virus recovery from ground, reagent-grade, and surface water samples seeded with poliovirus type 3 and murine norovirus. For the culturable virus and molecular assays, mean poliovirus recovery using the complete method was 58% and 20% in groundwater samples, 122% and 39% using low-titer spikes in reagent-grade water, 42% and 48% using high-titer spikes in reagent-grade water, and 11% and 10% in surface water with high turbidity, respectively. Murine norovirus recovery by the molecular assay was 30% in groundwater samples, less than 8% in both low- and high-titer spikes in reagent-grade water, and 6% in surface water with high turbidity. This study demonstrates the effectiveness of Method 1615 for use with groundwater samples and highlights the need for further research into its effectiveness with surface water.


2020 ◽  
Vol 9 (1) ◽  
pp. 1603-1606

Separating is a compelling procedure in expelling particles from water because utilization of sand become nowadays is very challenging in filtration process. It is a necessity to find an alternative media which must satisfy the low cost, easy availability, high durable with less zone required and discharge of water. Many ponds are contaminated mostly in high level of turbidity. In this work it is identified the various synthetic filter media taken examined for the replacement sand. The high level of turbid water may contain slit, dissolved organic compounds, and other microscopic organisms. So, in this method all contaminants are removed. The filtration procedure was created to break down and filtration of lab scale arrangement was planned. The performance as concerns lab scale reactor was optimized by using HDPE (High Density Polyethylene) granules are easily available in all polymer industries are used as a filter media. A proportional study of natural filter media sand and synthetic filter media HDPE granules was undergone for investigation. This two-filter media were selected because of its locally available and two different size of media (sand 2.5 mm, HDPE 3.5 mm) were evaluated. Bentonite (20mg/l ≈ 120 NTU). Identified two parameters were influenced the filtration recital i.e. media depth, filtration velocity. The outcomes uncovered to evacuate turbidity in best conditions where start to be low filtration rate (10.62 l/m² min), extended media midst (240mm). The removal of turbidity in sand was 70% and in plastic media was 55%. Nevertheless, headloss was achieved in higher manner comparing to plastic media. The treated water used as agriculture purpose.


Sign in / Sign up

Export Citation Format

Share Document