Cu-BTC-based composite adsorbents for selective adsorption of CO2 from syngas

Author(s):  
Yan Zhang ◽  
Haryo Wibowo ◽  
Li Zhong ◽  
Mika Horttanainen ◽  
Zunbo Wang ◽  
...  
2016 ◽  
Vol 138 (9) ◽  
pp. 3022-3030 ◽  
Author(s):  
Maw Lin Foo ◽  
Ryotaro Matsuda ◽  
Yuh Hijikata ◽  
Rajamani Krishna ◽  
Hiroshi Sato ◽  
...  

2018 ◽  
Vol 20 (2) ◽  
pp. 321-324 ◽  
Author(s):  
Jia-Bin Xiong ◽  
Jin-Hua Wang ◽  
Bao Li ◽  
Chun Zhang ◽  
Bien Tan ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 266 ◽  
Author(s):  
Yao Li ◽  
Ran Xu ◽  
Binbin Wang ◽  
Jianping Wei ◽  
Lanyun Wang ◽  
...  

Separation of impurities (CO2 and N2) from CH4 is an important issue for natural gas alternatives (such as coalbed gas, biogas, and landfill gas) upgrading. It is notably challenging to synthesize high N-doped porous carbon with an appropriate porous structure. In this work, high N content (14.48 wt %) porous carbon with micropore size of 0.52 and 1.2 nm and specific surface area of 862 m2 g−1 has been synthesized from potassium hydroxide (KOH) activated waste wool upon the urea modification. Pure component adsorption isotherms of CO2, CH4, and N2 are systematically measured on this enhanced N-doped porous carbon at 0 and 25 °C, up to 1 bar, to evaluate the gases adsorption capability, and correlated with the Langmuir model. These data are used to estimate the separation selectivities for binary mixtures of CO2/CH4 and CH4/N2 at different mixing ratios according to the ideal adsorbed solution theory (IAST) model. At an ambient condition of 25 °C and 1 bar, the predicted selectivities for equimolar CO2/CH4 and CH4/N2 are 3.19 and 7.62, respectively, and the adsorption capacities for CO2, CH4, and N2 are 2.91, 1.01, and 0.13 mmol g−1, respectively. This report introduces a simple pathway to obtain enhanced N-doped porous carbon with large adsorption capacities for gas separation of CO2/CH4 and CH4/N2.


2018 ◽  
Vol 43 ◽  
pp. 01001 ◽  
Author(s):  
Siew-Pei Lee ◽  
N. Mellon ◽  
Azmi M. Shariff ◽  
Jean-Marc Leveque

Development of covalent organic polymer (COP) is a potential new class of adsorbent for CO2 separation from natural gas mainly due to their good hydrothermal stability, chemical tuning flexibility and low cost. CO2 and methane adsorption on COP-1 was studied under atmospheric condition (101.3 kPa, 298 K). COP-1 was synthesized via catalyst-free polycondensation of cyanuric chloride and piperazine. The properties of COP-1 were characterized using several analytical methods such as Fourier Transform Infra-Red (FTIR), N2 adsorption and desorption measurement and Field Transmission Electron Microscopy in coupled of Energy Dispersive X-ray Spectroscopy (FESEM-EDS). Reversible CO2 adsorption isotherm on COP-1 reflects low heat of adsorption which is beneficial to energy minimization in adsorbent regeneration process. Furthermore, moderate specific surface area COP-1 (88.5 m2/g) shows about nine times CO2 uptake higher than methane. The highly selective adsorption performance provides a promising insight in application of COP adsorbent for CO2 removal in natural gas field.


2015 ◽  
Vol 44 (46) ◽  
pp. 19796-19799 ◽  
Author(s):  
Min-Min Liu ◽  
Yan-Lin Bi ◽  
Qin-Qin Dang ◽  
Xian-Ming Zhang

Reversible crystal transformation was observed between a mononuclear complex to a fourfold interpenetrated MOF with selective adsorption of CO2 up to 12.5 wt% at room temperature and low pressure.


Sign in / Sign up

Export Citation Format

Share Document