scholarly journals Adsorption of CO2 and Methane on Covalent Organic Polymer

2018 ◽  
Vol 43 ◽  
pp. 01001 ◽  
Author(s):  
Siew-Pei Lee ◽  
N. Mellon ◽  
Azmi M. Shariff ◽  
Jean-Marc Leveque

Development of covalent organic polymer (COP) is a potential new class of adsorbent for CO2 separation from natural gas mainly due to their good hydrothermal stability, chemical tuning flexibility and low cost. CO2 and methane adsorption on COP-1 was studied under atmospheric condition (101.3 kPa, 298 K). COP-1 was synthesized via catalyst-free polycondensation of cyanuric chloride and piperazine. The properties of COP-1 were characterized using several analytical methods such as Fourier Transform Infra-Red (FTIR), N2 adsorption and desorption measurement and Field Transmission Electron Microscopy in coupled of Energy Dispersive X-ray Spectroscopy (FESEM-EDS). Reversible CO2 adsorption isotherm on COP-1 reflects low heat of adsorption which is beneficial to energy minimization in adsorbent regeneration process. Furthermore, moderate specific surface area COP-1 (88.5 m2/g) shows about nine times CO2 uptake higher than methane. The highly selective adsorption performance provides a promising insight in application of COP adsorbent for CO2 removal in natural gas field.

Methane ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 24-37
Author(s):  
Muhammad Alfiza Farhan ◽  
Yuichi Sugai ◽  
Nuhindro Priagung Widodo ◽  
Syafrizal Syafrizal

The leakage of methane from the subsurface on the coalfield or natural gas field invariably becomes an important issue nowadays. In notable addition, materials such as activated carbon, zeolites, and Porapak have been successfully identified as adsorbents. Those adsorbents could adsorb methane at atmospheric pressure and room temperature. Therefore, in this scholarly study, a new method using adsorbents to detect points of methane leakage that can cover a wide-scale area was developed. In the beginning, the most capable adsorbent should be determined by quantifying adsorbed methane amount. Furthermore, checking the possibility of adsorption in the column diffusion and desorption method of adsorbents is equally necessary. The most capable adsorbent was activated carbon (AC), which can adsorb 1.187 × 10−3 mg-CH4/g-AC. Hereinafter, activated carbon successfully can adsorb methane through column diffusion, which simulates the situation of on-site measurement. The specific amount of adsorbed methane when the initial concentrations of CH4 in a bag were 200 ppm, 100 ppm, and 50 ppm was found to be 0.818 × 10−3 mg-CH4/g-AC, 0.397 × 10−3 mg-CH4/g-AC, 0.161 × 10−3 mg-CH4/g-AC, respectively. Desorption of activated carbon analysis shows that methane concentration increases during an hour in the temperature bath under 80 °C. In conclusion, soil methane leakage points can be detected using activated carbon by identifying the observed methane concentration increase.


Carbon ◽  
1995 ◽  
Vol 33 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Isao Mochida ◽  
Shunsuke Yatsunami ◽  
Yuji Kawabuchi ◽  
Yusuke Nakayama

Author(s):  
Mahsa Najafi ◽  
Yasamin Hosseini ◽  
Soodabeh Khalili ◽  
Majid Peyravi ◽  
Mohsen Jahanshahi

In this study a series of GO-based adsorbents were assembled via impregnation method using N-resources: 3-aminopropyl-triethoxysilane (APTS) as primary amio-silane, Piperazine (PIP) as secondary cyclic diamine, and ethanolamine (EA) as primary amine. The influence of amine type, adsorption temperature and pressure were undertaken to obtain the best CO2 adsorption performance. The characterizing techniques including FTIR, SEM, TGA, BET, BJH, and MP confirmed well impregnation of amine functionalities to the GO framework and high thermal stability of adsorbents. GO/APTS showed the maximum CO2 uptake (43.114 mmol/g) predicted by the Sips isotherm model and the highest CO2 ¬(15% V, balanced N2) selectivity (33.7 %) estimated by the ideal adsorbed solution theory. The experimental adsorption capacity of GO/APTS is 2.3 times higher than pristine GO. This behavior highlights the role of electron-donor amine and methyl groups and high molecular weight of APTS as well as high interfacial area of GO/APTS in CO2 capture.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 160
Author(s):  
Abdulaziz A. Alomair ◽  
Yousef Alqaheem

Post-treated mordenite membranes were prepared using sucrose (C12H22O11) as a carbon precursor to block any pinholes and defects in the zeolite layer. The pervaporation (PV) process was used to separate ethanol from the water. The effects of the sucrose concentration and the pyrolysis temperature (650–850 °C) were investigated, and the resulting high separation performance compared to those post/pre-treated membranes was reported in the literature. In this study, mordenite carbon membranes yielded a water/ethanol separation factor of 990.37 at a water flux of 9.10 g/m2h. The influence of the operating temperature on the performance of the membrane also was considered. It was concluded that the selective adsorption of water through zeolite pores was achieved. The entire preparation procedure was achieved using a rapid, low-cost preparation process.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2406
Author(s):  
Mashaalah Zarejousheghani ◽  
Parvaneh Rahimi ◽  
Helko Borsdorf ◽  
Stefan Zimmermann ◽  
Yvonne Joseph

Globally, there is growing concern about the health risks of water and air pollution. The U.S. Environmental Protection Agency (EPA) has developed a list of priority pollutants containing 129 different chemical compounds. All of these chemicals are of significant interest due to their serious health and safety issues. Permanent exposure to some concentrations of these chemicals can cause severe and irrecoverable health effects, which can be easily prevented by their early identification. Molecularly imprinted polymers (MIPs) offer great potential for selective adsorption of chemicals from water and air samples. These selective artificial bio(mimetic) receptors are promising candidates for modification of sensors, especially disposable sensors, due to their low-cost, long-term stability, ease of engineering, simplicity of production and their applicability for a wide range of targets. Herein, innovative strategies used to develop MIP-based sensors for EPA priority pollutants will be reviewed.


2012 ◽  
Vol 271-272 ◽  
pp. 1328-1345
Author(s):  
Jin Li ◽  
Jian Yang Zhao

In combination with the author's experiences in design for integrated unit for natural gas field gathering and transmission, this paper describes conventional practices and technical characteristics of integrated unit in the processes of standardization design and modularization establishment and analyzes the initial application of pneumatic control ball valve, wedge-shaped flowmeter and other new technologies for surface facilities in the gas field. As a result, a new design idea is proposed in this paper, i.e., to improve the integration level of surface facilities, to minimize power consumption and maintenance works and to realize unattended work mode.


Sign in / Sign up

Export Citation Format

Share Document