scholarly journals Stability and anatomical parameters of irradiated potato cultivars under drought stress

Author(s):  
Sherin Y. Naiem ◽  
Ayman E. Badran ◽  
Mohamed S. Boghdady ◽  
Saqer S. Alotaibi ◽  
Ahmed M. El-Shehawi ◽  
...  
Author(s):  
Haitham E. M. Zaki ◽  
Khlode S. A. Radwan

Abstract Background Potato (Solanum tuberosum L.), the world’s third most important crop, is frequently thought to be sensitive to moderately sensitive to drought, and yield has fallen considerably over consecutive stress periods. Drought produces a wide range of responses in potato, from physiological alterations to variations in growth rates and yield. Knowledge about these responses is essential for getting a full understanding of drought-tolerance mechanism in potato plants which will help in the identification of drought-tolerant cultivars. Results A set of 21 commercial potato cultivars representing the genetic diversity in the Middle East countries market were screened for drought tolerance by measuring morpho-physiological traits and tuber production under in vitro and field trials. Cultivars were exposed to drought stress ranging from no drought to 0.1, 0.2 and 0.3 mol L−1 sorbitol in in vitro-based screening and 60, 40 and 20% soil moisture content in field-based screening. Drought stress adversely affected plant growth, yield and cultivars differed for their responses. Shoots and roots fresh weights, root length, surface area of root, no. of roots, no. of leaves, leaf area, plant water content %, K+ content, under in vitro drought treatments and shoots fresh and dry weights, no. of tubers and tuber yield under field drought treatments were examined and all decreased due to drought. The stress tolerance index decreased with increasing drought in examined cultivars; nevertheless, it revealed a degree of tolerance in some of them. Grouping cultivars by cluster analysis for response to drought resulted in: (i) a tolerant group of five cultivars, (ii) a moderately tolerant group of 11 cultivars, and (iii) a sensitive group of five cultivars. Furthermore, stress-related genes, i.e., DRO, ERECTA, ERF, DREB and StMYB were up-regulated in the five cultivars of the tolerant group. Likewise, the stomatal conductance and transpiration explained high correlation with the tuber yield in this group of cultivars. Conclusion The diversity in germplasm indicated that potato cultivars can be developed for production under certain degrees of drought. Some cultivars are good candidates to be included in drought-tolerant breeding programs and recommended for cultivation in drought-stricken regions. Graphical Abstract


2016 ◽  
Vol 66 (2) ◽  
pp. 328-331 ◽  
Author(s):  
Dorota Soltys-Kalina ◽  
Jarosław Plich ◽  
Danuta Strzelczyk-Żyta ◽  
Jadwiga Śliwka ◽  
Waldemar Marczewski

2020 ◽  
Vol 63 (4) ◽  
pp. 463-477
Author(s):  
Jarosław Plich ◽  
Dominika Boguszewska-Mańkowska ◽  
Waldemar Marczewski

AbstractPotato (Solanum tuberosum L.) is considered a drought-sensitive crop species, although cultivar-dependent differences in tolerance have been described. The extent of drought-induced tuber yield decreases is considered the main criterion for potato tolerance to drought. In this study, eighteen closely related potato cultivars were subjected to drought stress, and among them, two groups with contrasting drought tolerance phenotypes were distinguished (tolerant: Sebago, Katahdin and Cayuga; susceptible: Sequoia and Carpatin). Photosynthesis is the most important primary metabolic process that determines the yield of potato crops and is also strongly affected by drought. The photosynthetic parameters of these two groups of potato cultivars were assessed by measuring chlorophyll a fluorescence. Drought-induced changes in the examined parameters were observed in both groups of cultivars, but the changes in the drought-sensitive group were relatively much more pronounced. The tolerant and sensitive groups significantly differed in terms of most photosynthetic parameters. Principal component analysis (PCA) revealed differences in the responses of the examined potato cultivars and separated tolerant cultivars from sensitive ones, similar to the criterion of the relative decrease in tuber yields. These results suggest that chlorophyll a fluorescence may serve as a useful tool for estimating the level of tolerance to drought stress in potato.


2017 ◽  
Vol 63 (No. 4) ◽  
pp. 159-164 ◽  
Author(s):  
Zarzyńska Krystyna ◽  
Boguszewska-Mańkowska Dominika ◽  
Nosalewicz Artur

Drought can cause substantial yield losses, particularly for crops with shallow root systems, such as potato (Solanum tuberosum). This study tested whether root system architecture could affect potato yield under drought conditions. The following parameters of the roots were measured: depth range, total length, total area, surface area, average diameter, and total dry weight of the root system. These parameters in soil layers were also measured at different depths. Five potato cultivars from a group of mid-early cultivars were examined in this study. The same cultivars were tested under two conditions: control with optimal irrigation and drought stress treatment without irrigation for three weeks after the end of tuberization to check the tuber yield. Significant differences were observed among cultivars in the size of the root system and its architecture. The biggest differences in the individual layers of soil profile related to the diameter of the root, the root length, and the surface area. Also a relationship between the size of the root system and yield of tubers was found. The strongest correlations involved the root length and the root surface area with the decrease in tuber yield under the drought, then the dry root mass with the decrease in yield. These correlations were negative: the higher the value of the parameter, the smaller the observed decrease in yield. This showed a relationship between root length and mass with the decrease of yield; this relationship was stronger for roots in deeper layers than in the shallowest layers. Therefore, this study indicates that breeding potato cultivars with deep root systems might improve tuber yields under drought conditions.


2017 ◽  
Vol 63 (No. 1) ◽  
pp. 40-46 ◽  
Author(s):  
Rykaczewska Krystyna

Potato (Solanum tuberosum L.) is a plant typical mainly for temperate climate and develops best at about 20°C. Heat stress due to increased temperatures is an agricultural problem in many areas in the world. The aim of our work was to assess the response of selected new potato cultivars to heat and drought stress during the subsequent stages of plant growth starting from buds forming. The pot experiment was carried out over the course of two years with the following early cultivars: Lord, Miłek, Gwiazda, Hubal, Oberon and Tetyda. The impact of heat (38°C/25°C) and drought stress on potato plants was tested in four periods of two weeks. In these periods half of the plants were watered to a level close to optimal while the other half remained without irrigation. Our studies demonstrated that tested potato cultivars’ response to heat stress depends on the growth stage, in which the temperature acts on the plants and on the soil moisture. Besides the decrease in yield and tubers’ diminution, the biggest problem was the presence of tubers with physiological defects, particularly of immature tubers. The response of cultivars was differentiated.


Sign in / Sign up

Export Citation Format

Share Document