scholarly journals Deep learning application engine (DLAE): Development and integration of deep learning algorithms in medical imaging

SoftwareX ◽  
2019 ◽  
Vol 10 ◽  
pp. 100347 ◽  
Author(s):  
Jeremiah W. Sanders ◽  
Justin R. Fletcher ◽  
Steven J. Frank ◽  
Ho-Ling Liu ◽  
Jason M. Johnson ◽  
...  

For years’ radiologist and clinician continues to employs various approaches, machine learning algorithms included to detect, diagnose, and prevent diseases using medical imaging. Recent advances in deep learning made medical imaging analysis and processing an active research area, various algorithms for segmentation, detection, and classification have been proposed. In this survey, we describe the trends of deep learning algorithms use in medical imaging, their architecture, hardware, and software used are all discussed. We concluded with the proposed model for brain lesion segmentation and classification using Magnetic Resonance Images (MRI).


Author(s):  
R. Udendhran ◽  
Balamurugan M.

The recent growth of big data has ushered in a new era of deep learning algorithms in every sphere of technological advance, including medicine, as well as in medical imaging, particularly radiology. However, the recent achievements of deep learning, in particular biomedical applications, have, to some extent, masked decades-long developments in computational technology for medical image analysis. The methods of multi-modality medical imaging have been implemented in clinical as well as research studies. Due to the reason that multi-modal image analysis and deep learning algorithms have seen fast development and provide certain benefits to biomedical applications, this chapter presents the importance of deep learning-driven medical imaging applications, future advancements, and techniques to enhance biomedical applications by employing deep learning.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0238908
Author(s):  
Dong Wook Kim ◽  
Hye Young Jang ◽  
Yousun Ko ◽  
Jung Hee Son ◽  
Pyeong Hwa Kim ◽  
...  

2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


Sign in / Sign up

Export Citation Format

Share Document