Rhodotorulic acid enhances root colonization of tomato plants by arbuscular mycorrhizal (AM) fungi due to its stimulatory effect on the pre-symbiotic stages of the AM fungi

2008 ◽  
Vol 40 (9) ◽  
pp. 2474-2476 ◽  
Author(s):  
J.M. Scervino ◽  
I. Sampedro ◽  
M.A. Ponce ◽  
M.A. Rodriguez ◽  
J.A. Ocampo ◽  
...  
2017 ◽  
Vol 6 (06) ◽  
pp. 5415
Author(s):  
Mane S. R. ◽  
Kumbhar V. R. ◽  
Birajdar G. M. ◽  
Naryankar R. S. ◽  
Gavali M. T. ◽  
...  

Clitoria ternatea L. is an excellent herbal medicinal plant. Arbusular Mycorrhizal fungal (AMF) colonization and biomass of three different tested conditions of Clitoria ternatea plant was investigated. Inoculums of indigenous AMF and Trichoderma harzianum was tested greenhouse experiment and compared with natural condition after 60th days of treatment. Percentage of Arbuscular mycorrhizal (AM) infection, number of resting spores and AM fungi species varies in different land. Among three different conditions, natural conditions showed maximum root colonization (75.89%) than treated one but minimum spore density (358.8/100gsoil). Highest spore density (481.6/100g soil) was found in T. harzianum treated condition followed by indigenous AMF treatment Acaulospora Glomus and Sclerocystis these three genera were found frequently. AMF inoculums and T.harzianum treatments conditions were observed promising biomass data of 60th days after treatment (DAT).When AMF are more colonized to plants then enhanced the biomass productivity.


2020 ◽  
Vol 8 (12) ◽  
pp. 2038
Author(s):  
Neda Khoshkhatti ◽  
Omid Eini ◽  
Davoud Koolivand ◽  
Antreas Pogiatzis ◽  
John N. Klironomos ◽  
...  

Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.


2007 ◽  
Vol 64 (4) ◽  
pp. 393-399 ◽  
Author(s):  
Milene Moreira ◽  
Dilmar Baretta ◽  
Siu Mui Tsai ◽  
Sandra Maria Gomes-da-Costa ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia (Bert.) O. Ktze. is an endangered Brazilian coniferous tree that has been almost exterminated in the native areas because of uncontrolled wood exploitation. This tree has been shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) and, therefore, AMF may be essential for forest sustainability and biological diversity. Root colonization, density and diversity of AMF spores were assessed in two Araucaria forest stands at the State Park of Alto Ribeira (PETAR), at two sampling dates: May and October. A comparison was made between a mature native stand composed of Araucaria trees mixed into a variety of tropical trees and shrubs, without any sign of anthropogenic interference (FN) and an Araucaria stand planted in 1987 (R), which has been used as a pasture. Assessments included percent root colonization, AMF spore numbers and species richness, Simpson's dominance index (Is), and Shannon's diversity index (H). Mycorrhizal root colonization did not differ between ecosystems in May. In October, however, the native stand (FN) presented a higher colonization than the planted forest (R), and the root colonization was more intense than in May. When considering both sampling periods and forests, 27 species of AM fungi, with higher numbers of spores in FN than in R were found. Canonical discriminant analysis (CDA) indicated Shannon's diversity index as the ecological attribute that contributed the most to distinguish between forest ecosystems, with higher value of H in FN in relation to R. CDA showed to be a useful tool for the study of ecological attributes.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 960-966 ◽  
Author(s):  
Wade H. Elmer ◽  
Joseph J. Pignatello

Pyrolyzed biomass waste, commonly called biochar, has attracted interest as a soil amendment. A commercial prototype biochar produced by fast pyrolysis of hardwood dust was examined in soils to determine if it could reduce the damaging effect of allelopathy on arbuscular mycorrhizal (AM) root colonization and on Fusarium crown and root rot of asparagus. In greenhouse studies, biochar added at 1.5 and 3.0% (wt/wt) to asparagus field soil caused proportional increases in root weights and linear reductions in the percentage of root lesions caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum compared with a control. Concomitant with these effects was a 100% increase in root colonization by AM fungi at the 3.0% rate. Addition of aromatic acids (cinnamic, coumaric, and ferulic) that are known allelopathic agents affecting asparagus reduced AM colonization but the deleterious effects were not observed following the application of biochar at the higher rate. When dried, ground, asparagus root and crown tissues infested with Fusarium spp. were added to soilless potting mix at 0, 1, or 5 g/liter of potting mix and then planted with asparagus, there was a decrease in asparagus root weight and increase in disease at 1 g/liter of potting mix but results were inconsistent at the higher residue rate. However, when biochar was added at 35 g/liter of potting mix (roughly 10%, vol/vol), these adverse effects on root weight and disease were equal to the nontreated controls. A small demonstration was conducted in field microplots. Those plots amended with biochar (3.5% [wt/wt] soil) produced asparagus plants with more AM colonization in the first year of growth but, in the subsequent year, biochar-treated plants were reduced in size, possibly due to greater than average precipitation and the ability of biochar to retain moisture that, in turn, may have created conditions conducive to root rot. These studies provide evidence that biochar may be useful in overcoming the deleterious effects of allelopathic residues in replant soils on asparagus.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Nasser Aliasgharzad ◽  
Saheb Bolandnazar ◽  
Mohammad Neyshabouri ◽  
Nader Chaparzadeh

AbstractDrought is a world-spread problem seriously influencing crop production. Arbuscular mycorrhizal (AM) association and soil microorganisms can help plant growth under water stress condition by improvement of its nutrient and water uptake. In this experiment, onion plants (Allium cepa L. cv. Red Azar Shahr) were inoculated with three AM fungi species (Glomus versiforme, G. intraradices, G. etunicatum) or left un-inoculated as non-mycorrhizal plants, in a sterile or non-sterile sandy loam soil. Plants were irrigated at 7, 9 or 11-day intervals to keep the soil moisture content to field capacity at the irrigation time. Mycorrhizal root colonization decreased (p < 0.05) with an increase in irrigation interval, and the highest root colonization was achieved at 7-day irrigated onions in symbiosis with G. versiforme. Phosphorus content in plant tissue was significantly increased in mycorrhizal than non-mycorrhizal onions. Plants inoculated with G. versiforme at 9-day interval treatment had the highest leaf P content, while the lowest P was observed in non-mycorrhizal plants at all irrigation intervals. Onions inoculated by G. versiforme or G. etunicatum at 9-day irrigation interval had the highest K content. Results revealed that the inoculation of onion plant with G. versiforme or G. etunicatum and increasing irrigation interval up to 9 days, could improve P and K uptake.


2020 ◽  
Vol 21 (19) ◽  
pp. 7029
Author(s):  
Ramona Schubert ◽  
Stephanie Werner ◽  
Hillary Cirka ◽  
Philipp Rödel ◽  
Yudelsy Tandron Moya ◽  
...  

Industrialized tomato production faces a decrease in flavors and nutritional value due to conventional breeding. Moreover, tomato production heavily relies on nitrogen and phosphate fertilization. Phosphate uptake and improvement of fruit quality by arbuscular mycorrhizal (AM) fungi are well-studied. We addressed the question of whether commercially used tomato cultivars grown in a hydroponic system can be mycorrhizal, leading to improved fruit quality. Tomato plants inoculated with Rhizophagus irregularis were grown under different phosphate concentrations and in substrates used in industrial tomato production. Changes in fruit gene expression and metabolite levels were checked by RNAseq and metabolite determination, respectively. The tests revealed that reduction of phosphate to 80% and use of mixed substrate allow AM establishment without affecting yield. By comparing green fruits from non-mycorrhizal and mycorrhizal plants, differentially expressed genes (DEGs) were found to possibly be involved in processes regulating fruit maturation and nutrition. Red fruits from mycorrhizal plants showed a trend of higher BRIX values and increased levels of carotenoids in comparison to those from non-mycorrhizal plants. Free amino acids exhibited up to four times higher levels in red fruits due to AM, showing the potential of mycorrhization to increase the nutritional value of tomatoes in industrialized production.


2007 ◽  
Vol 53 (6) ◽  
pp. 702-709 ◽  
Author(s):  
Jose M. Scervino ◽  
María A. Ponce ◽  
Rosa Erra-Bassells ◽  
Josefina Bompadre ◽  
Horst Vierheilig ◽  
...  

No clear data are available on how flavonoids from different chemical groups affect root colonization by arbuscular mycorrhizal fungi (AMF) and whether flavonoids affecting the presymbiotic growth of AMF also affect root colonization by AMF. In the present work, we compared the effect of flavones (chrysin and luteolin) and flavonols (kaempferol, morin, isorhamnetin, and rutin) on root colonization (number of entry points and degree of root colonization) of tomato plants ( Lycopersicum esculentum L.) with the effect of these flavonoids on the presymbiotic growth of these AMF, which has been reported in a recent study. With all tested AMF ( Gigaspora rosea , Gigaspora margarita , Glomus mosseae, and Glomus intraradices) a correlation between the number of entry points and the percentage of root colonization was found. When the number of entry points was high, root colonization was also enhanced. Application of the flavones chrysin and luteolin and of the flavonol morin increased the number of entry points and the degree of colonization,whereas the flavonols kaempferol, isorhamnetin, and rutin showed no effect. These results show that in contrast to their effect on the presymbiotic growth of the AMF on the level of root colonization, the tested flavonoids do not exhibit a genus- and species-specificity. Moreover, comparison of our data with the data obtained by J.M. Scervino, M.A. Ponce, R. Erra-Bassells, H. Vierheilig, J.A. Ocampo, and A. Godeas. (2005a. J. Plant Interact. 15: 22–30) indicates that a positive effect on the hyphal growth of AMF does not necessarily result in an enhanced AM root colonization, further indicating that the mode of action of flavonoids at the level of root colonization is more complex.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 131 ◽  
Author(s):  
Ludovico Formenti ◽  
Sergio Rasmann

Arbuscular mycorrhizal (AM) fungi favor plant growth by improving nutrient acquisition, but also by increasing their resistance against abiotic and biotic stressors, including herbivory. Mechanisms of AM fungal mediated increased resistance include a direct effect of AM fungi on plant vigor, but also a manipulation of the hormonal cascades, such as the systemic activation of jasmonic acid (JA) dependent defenses. However, how AM fungal inoculation and variation in the endogenous JA production interact to produce increased resistance against insect herbivores remains to be further elucidated. To address this question, three genotypes of Solanum lycopersicum L., a JA-biosynthesis deficient mutant, a JA over-accumulating mutant, and their wild-type were either inoculated with AM fungi or left un-inoculated. Plant growth-related traits and resistance against Spodoptera littoralis (Boisduval) caterpillars, a major crop pest, were measured. Overall, we found that deficiency in JA production reduced plant development and were the least resistant against S. littoralis. Moreover, AM fungi increased plant resistance against S. littoralis, but such beneficial effect was more pronounced in JA-deficient plant than on JA over-accumulating plants. These results highlight that AM fungi-driven increased plant resistance is negatively affected by the ability of plants to produce JA and that AM fungi complement JA-mediated endogenous plant defenses in this system.


2021 ◽  
Author(s):  
Peng Wang ◽  
Roxane Snijders ◽  
Wouter Kohlen ◽  
Jieyu Liu ◽  
Ton Bisseling ◽  
...  

AbstractTo acquire sufficient mineral nutrients such as phosphate (Pi) from the soil, most plants engage in a symbiosis with arbuscular mycorrhizal (AM) fungi. Attracted by plant-secreted strigolactones, the fungi colonize the roots and form highly-branched hyphal structures called arbuscules inside inner cortex cells. It is essential that the host plant controls the different steps of this interaction to maintain its symbiotic nature. However, how plants sense the amount of Pi obtained from the fungus and how this determines the arbuscule lifetime is far from understood. Here, we show that Medicago truncatula SPX-domain containing proteins SPX1 and SPX3 regulate root phosphate starvation responses as well as fungal colonization and arbuscule degradation. SPX1 and SPX3 are induced upon phosphate starvation but become restricted to arbuscule-containing cells upon establishment of the symbiosis. Under Pi-limiting conditions they facilitate the expression of the strigolactone biosynthesis gene DWARF27, which correlates with increased fungal branching by root exudates and increased root colonization. Later, in the arbuscule-containing cells SPX1 and SPX3 redundantly control the timely degradation of arbuscules. This regulation does not seem to involve direct interactions with known transcriptional regulators of arbuscule degradation. We propose a model where SPX1 and SPX3 control arbuscule degeneration in a Pi-dependent manner via a yet-to-identify negative regulator.


2017 ◽  
Vol 9 (1) ◽  
pp. 621-625 ◽  
Author(s):  
P. Panneerselvam ◽  
B. Saritha

A study was undertaken to know the effect of co-inoculation of Arbuscular Mycorrhizal (AM) fungi and its associated bacteria on enhancing AM root colonization, growth promotion and nutrient acquisition in grafted sapota plants. The best mycorrhiza associated bacteria i.e. Pseudomonas putida (HM590707) isolated from Funneliformis mosseae spore was evaluated along with AM fungi for growth promotion and AM fungal colonization in grafted sapota plants. The combined application of P. putida along with AM fungi significantly increased plant height (39.67 %), stem girth (3.2 cm), total biomass (66.8 g plant-1), AM root colonization (73.4 %)and plant nutrient concentrations viz., N (2.52 %), P (0.18 %), K (2.90 %), Fe (428.4 ppm) and Zn (21.40 ppm) as compared to uninoculated control. This finding clearly demonstrated that grafted sapota plants can be successfully established by combined inoculation of AM fungi and its associated bacteria which have a greater impact on healthy grafted plants.


Sign in / Sign up

Export Citation Format

Share Document