Numerical and experimental study on scaled soil-structure model for small shaking table tests

2019 ◽  
Vol 119 ◽  
pp. 308-319 ◽  
Author(s):  
Fatih Goktepe ◽  
Erkan Celebi ◽  
Ahmad Jawad Omid
2012 ◽  
Vol 256-259 ◽  
pp. 372-376 ◽  
Author(s):  
Jing Bo Liu ◽  
Dong Dong Zhao ◽  
Wen Hui Wang ◽  
Xiang Qing Liu

Two geotechnical centrifuge model tests of a soil-structure system with different burial depths are performed to investigate the interaction between soil and structure. The tests are performed at 50 gravitational centrifuge accelerations and the input motion is Kobe wave. This paper focuses on the accelerations and displacements in the soil-structures system. The peak accelerations and displacements along the axis of the structure and along the vertical line 17cm away from the axis are presented. The acceleration and displacement response due to the interaction between soil and structure are studied.


Author(s):  
Fabio Rizzo ◽  
Alessandro Pagliaroli ◽  
Giuseppe Maddaloni ◽  
Antonio Occhiuzzi ◽  
Andrea Prota

<p>The paper discusses results of shaking table tests on an in-scale high-rise building model. The purpose was to calibrate a dynamic numerical model for multi-hazard analyses to investigate the effects of floor acceleration. Accelerations, because of vibration of non-structural elements, affect both the comfort and safety of people. The research investigates the acceleration effects of both seismic and wind forces on an aeroelastic in-scale model of a multi-story building. The paper discusses the first phase of experiments and gives results of floor accelerations induced by several different base seismic impulses. Structural analyses were first performed on the full-scale prototype to take soil-structure interaction into account. Subsequently the scale model was designed through aeroelastic scale laws. Shaking table experiments were then carried out under different base accelerations. The response of the model and, in particular, amplification of effects from base to top are discussed.</p>


2011 ◽  
Vol 261-263 ◽  
pp. 1619-1624
Author(s):  
Pei Zhen Li ◽  
Jing Meng ◽  
Peng Zhao ◽  
Xi Lin Lu

Shaking table test on soil-structure interaction system in harder site condition is presented briefly in this paper. Three-dimensional finite element analysis on shaking table test is carried out using ANSYS program. The surface-to-surface contact element is taken into consideration for the nonlinearity of the state of the interface of the soil-pile and an equivalent linear model is used for soil behavior. By comparing the results of the finite element analysis with the data from shaking table tests, the computational model is validated. Based on the calculation results, the paper gives the seismic responses under the consideration of soil-structure interaction in harder site condition, including acceleration response, contact analysis on soil pile interface and so on.


2014 ◽  
Vol 19 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Bupavech Phansri ◽  
Sumetee Charoenwongmit ◽  
Ekkachai Yooprasertchai ◽  
Kyung-Ho Park ◽  
Pennung Warnitchai ◽  
...  

Author(s):  
Yen-Po Wang ◽  
Di-Hung Chen ◽  
Chien-Liang Lee

An innovative displacement-dependent metallic yielding damper designed to deform inelastically under in-plane flexural bending for seismic protection of building structures is proposed. The in-plane flexural damper that originated from a portal frame is modified by replacing the beam with a circular arch so that the effect of stress concentration can be minimized. Component tests of the in-plane dampers were conducted and compared with analytical results. Hysteresis of the component test indicates a consistent energy-dissipative characteristic of the damper. Moreover, seismic performance of the proposed damper via a series of shaking table tests was carried out. Excellent seismic performance of the proposed in-plane arched damper was observed. The acceleration responses in both peak and root-mean-squares of all floors are significantly reduced, and were greater in extent compared to the earthquake intensity increases.


2014 ◽  
Vol 580-583 ◽  
pp. 1490-1493 ◽  
Author(s):  
Wei Xiong ◽  
Ming Ren Yan ◽  
Yao Zhuang Li

The isolation effectiveness of the Geotechnical Seismic Isolation (GSI) system was further investigated via a series of prescribed shaking-table tests. The dynamic response of GSI system was also evaluated in detail of this work. A parametric study for assessment of the isolation performance of GSI was conducted by varying experimental key parameters, such as rubber percentage of rubber-sand mixtures (RSM), configuration of the foundation, storey number of the superstructure, and different kinds of seismic acceleration inputs. From the parametric survey, it can be concluded that the GSI system can to some extent attenuate the dynamic response of the superstructure under big earthquake shakings.


Sign in / Sign up

Export Citation Format

Share Document