Geotechnical Seismic Isolation System - Further Experimental Study

2014 ◽  
Vol 580-583 ◽  
pp. 1490-1493 ◽  
Author(s):  
Wei Xiong ◽  
Ming Ren Yan ◽  
Yao Zhuang Li

The isolation effectiveness of the Geotechnical Seismic Isolation (GSI) system was further investigated via a series of prescribed shaking-table tests. The dynamic response of GSI system was also evaluated in detail of this work. A parametric study for assessment of the isolation performance of GSI was conducted by varying experimental key parameters, such as rubber percentage of rubber-sand mixtures (RSM), configuration of the foundation, storey number of the superstructure, and different kinds of seismic acceleration inputs. From the parametric survey, it can be concluded that the GSI system can to some extent attenuate the dynamic response of the superstructure under big earthquake shakings.

Author(s):  
Shuichi Yabana ◽  
Kenji Kanazawa ◽  
Seiji Nagata ◽  
Seiji Kitamura ◽  
Takeshi Sano

This paper describes results of shaking table tests to grasp ultimate behavior of seismic isolation system under extremely strong earthquake motions, including failure of rubber bearings. The results of the shaking table tests are expected to be useful for the design of seismically isolated nuclear facilities, especially fast breeder reactor (FBR) plants. In the test, lead rubber bearings, of which the diameter is 505 mm and about 1/3 scale of a prototype in planning FBR plants, are used; the test specimens are loaded by the largest three-dimensional shaking table in E-defense of National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. Failure of rubber bearings occurs with amplified tentative design earthquake motions. From the tests, the ultimate responses of the upper structure and rubber bearings are presented. In particular, the change of floor response spectra and restoring force characteristics of rubber bearings according to increase of input motions is discussed. Furthermore, mechanism of the failure of rubber bearings is investigated from the observation of failure surfaces and cut sections, static loading tests, and material tests of rubber bearings. Finally, the function of seismic isolation system after the failure of a part of rubber bearings is confirmed under the tentative design earthquake.


2021 ◽  
Vol 11 (10) ◽  
pp. 4431
Author(s):  
Gyeong-Hoi Koo ◽  
Tae-Myung Shin ◽  
Sang-Jin Ma

To assure seismic isolation performance against design and beyond design basis earthquakes in the nuclear facility components, the lead inserted small-sized laminated rubber bearings (LRB), which has a 10 kN vertical design load, have been designed and quasi-statically tested to validate their design mechanical properties in previous studies. Following this study, the seismic shaking tests of these full-scale LRBs are performed and discussed in this paper with the dummy mass system to investigate actual seismic isolation performance, dynamic characteristics of LRBs, consistency of the LRB’s quality, and so on. To study the seismic isolation performance, three beam structures (S1–S3) with different natural frequencies were installed both on the shaking table and the dummy mass supported by four LRBs: (1) S1: structure close to seismic isolation frequency; (2) S2: structure close to peak input spectral frequency; (3) S3: structure in the high-frequency region. The test results are described in various seismic levels of OBE (Operating Basis Earthquake), SSE (Safe Shutdown Earthquake), and BDBE (Beyond Design Basis Earthquake), and are compared with the analysis results to assure the seismic isolation performance and the LRB’s design parameters. From the results of the shaking table tests, it is confirmed that the lead inserted small-sized LRBs reveal an adequate seismic isolation performance and their dynamic characteristics as intended in the LRB design.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


2010 ◽  
Vol 163-167 ◽  
pp. 4449-4453
Author(s):  
Wei Xiong ◽  
Hing Ho Tsang ◽  
S.H. Lo ◽  
Shou Ping Shang ◽  
Hai Dong Wang ◽  
...  

In this study, an experimental investigation program on a newly proposed seismic isolation technique, namely “Geotechnical Seismic Isolation (GSI) system”, is conducted with an aim of simulating its dynamic performance during earthquakes. The testing procedure is three-fold: (1) A series of cyclic simple shear tests is conducted on the key constituent material of the proposed GSI system, i.e., rubber-sand mixture (RSM) in order to understand its behavior under cyclic loadings. (2) The GSI system is then subjected to a series of shaking table tests with different levels of input ground shakings. (3) By varying the controlling parameters such as percentage of rubber in RSM, thickness of RSM layer, coupled with the weight of superstructure, a comprehensive parametric study is performed. This experimental survey demonstrates the excellent performance of the GSI system for potential seismic hazard mitigation.


1996 ◽  
Vol 2 (2) ◽  
pp. 50-53
Author(s):  
Susumu OHTSUKA ◽  
Kunio HAYAKAWA ◽  
Masahumi MOTEKI ◽  
Mituru SUGISAWA

2014 ◽  
Vol 19 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Bupavech Phansri ◽  
Sumetee Charoenwongmit ◽  
Ekkachai Yooprasertchai ◽  
Kyung-Ho Park ◽  
Pennung Warnitchai ◽  
...  

Author(s):  
Tsuyoshi Fukasawa ◽  
Satoshi Fujita

This paper describes the research and development of new type of the isolation systems suitable for various structures. Basic concept of the new isolation system is to realize cost effective design without any reduction in the isolation performance. This paper presents results obtained from experimental and analytical studies to evaluate isolation performances of newly developed the isolation system. In the experiment, static tests were first carried out using a 0.20 scale model (55 kg mass, and 0.50 m × 0.50 m × 0.27 m size) for isolated-light-weight-structures model which was supported by two linear ball bearings and, restoring force was provided to superstructure by transversal stiffness of a coiled spring, so as to examine restoring force characteristic of the coiled spring. Second, dynamic tests were implemented in order to investigate the isolation performance of the isolation system against several actual seismic inputs. In analysis, seismic response analyses for the scale model, regarding the vibration tests using the actual seismic wave, were carried out to evaluate the response analytical method for the isolation system using the coiled spring. From these results, the followings are clarified. (1) Analytical results for the isolated light-weight-structures model agree well with experiment results. (2) The newly developed seismic isolation system using the coiled spring reduced response accelerations of the light-weight-structures sufficiently.


Sign in / Sign up

Export Citation Format

Share Document