Performance of a nonlinear hybrid base isolation system under the ground motions

2021 ◽  
Vol 143 ◽  
pp. 106589 ◽  
Author(s):  
Chunxiang Li ◽  
Ke Chang ◽  
Liyuan Cao ◽  
Yu Huang
2017 ◽  
Vol 21 (5) ◽  
pp. 675-693 ◽  
Author(s):  
Aruna Rawat ◽  
Naseef Ummer ◽  
Vasant Matsagar

Rolling base isolation system provides effective isolation to the structures from seismic base excitations by virtue of its low frictional resistance. Herein, dynamic analysis of flexible-shear type multi-storey building mounted on orthogonally placed elliptical rolling rod base isolation systems subjected to bi-directional components of near-fault earthquake ground motions is presented. The orthogonally placed rods would make it possible to resist the earthquake forces induced in the structure in both the horizontal directions. The curved surface of these elliptical rods has a self-restoring capability due to which the magnitude of peak isolator displacement and residual displacement is reduced. The roughness of the tempered curved surface of the rollers dissipates energy in motion due to frictional damping. The seismic performance of the multi-storey building mounted on the elliptical rolling rod base isolation system is compared with that mounted on the sliding pure-friction and cylindrical rolling rod systems. Parametric studies are conducted to examine the behavior of the building for different superstructure flexibilities, eccentricities of the elliptical rod, and coefficients of friction. It is concluded that the elliptical rolling rod base isolation system is effective in mitigation of damaging effects of the near-fault earthquake ground motions in the multi-storey buildings. Even under the near-fault earthquake ground motions, the base-isolated building mounted on the elliptical rolling rods shows considerable reduction in seismic response. The isolator displacement with the elliptical rolling rod base isolation system is less in comparison to the pure-friction and cylindrical rolling rod systems.


2010 ◽  
Vol 163-167 ◽  
pp. 4179-4184 ◽  
Author(s):  
He Len Wu

The paper proposes an aseismic hybrid control system to control the response of structures subjected to large ground motions caused by large magnitude earthquakes. The proposed hybrid control system consists of a base isolation system (laminated rubber bearings) connected to an active control system (a tuned mass damper and an actuator). The base isolation system is used to decouple the horizontal ground motions from the structure, whereas the active control system is used to protect the safety and integrity of the base isolation system. A 5-story benchmark building model is developed to study the effectiveness of the hybrid control system against different ground motions. It was found from the numerical results that rubber bearing system alone shows good performance and resists ground motion due to Hachinohe 1968, Kobe 1995, and Northridge 1994 earthquakes, but is somewhat unable to protect the model against El-Centro 1940 earthquake. After the installation of an active control system onto the rubber-isolated model, further improvements to earthquake resistance against these four earthquakes were observed, especially against the El-Centro earthquake. The merit of the hybrid control system lies in its capability to protect against different ground motions, with varying intensity and frequency content.


Author(s):  
C. S. Tsai ◽  
Ching-Pei Tsou ◽  
Yung-Chang Lin ◽  
Mei-Ju Chen ◽  
Wen-Shin Chen

Earthquake ground motions often result in significant seismic disasters. Strong ground motions will not only cause damage, but may also cause the collapse of structures. People have to face up the suffering from the earthquake damage, and the indirect loss which may be more serious than the damage itself. For example, the antique breaks in museum, and the equipment damages in hi-tech industries are often in huge loss. Therefore, in addition to promoting the earthquake-resistant capacity of a structure, it is also important to ensure the safety of the ancient valuable objects and the instruments in structures. For this reason, this study is aimed at a new damped rolling type base isolation system named the ball pendulum system (BPS) to be installed under the motion sensitive equipment and proceeding all related studies. The isolation device can isolate earthquake from buildings or equipments in any direction by rolling motions and damping materials. This study has conducted a series of component tests and shaking table tests for examining the behaviors of materials and earthquake proof benefits. From the experiment results, it is found that this device can reduce more than 80% of acceleration response under earthquakes with peak ground acceleration of 450 gal. So, the new rolling isolation system with a damping material can be recognized as a feasible and promising way in mitigating the seismic response of equipment.


2018 ◽  
Vol 30 (1) ◽  
pp. 16-31 ◽  
Author(s):  
Ramin Rabiee ◽  
Yunbyeong Chae

Base isolation system is widely used to protect important and essential buildings from seismic hazards. The use of high damping is effective in reducing the resonance effect under long-period earthquake ground motions. However, high damping increases the acceleration demand under short-period ground motions, leading to a higher risk of damage of nonstructural components. Actually, low damping is beneficial to reduce the acceleration demand under short-period ground motions, suggesting the use of adaptive damping control, that is, high damping under long-period motions and low damping under short-period motions. In order to implement this concept, a semi-actively controlled base isolation system is provided in this article along with a new control law based on the transmissibility theory. Unlike existing studies, the proposed method enables a systematic design procedure for base isolated structures with semi-active dampers, which is called the simplified design procedure in this article. The performance of the proposed system is evaluated with numerical simulations for a base isolated three-story building with magneto-rheological dampers. It was shown that the proposed system achieves a high level of performance under long-period ground motions, while maintaining the exceptional performance of a conventional base isolation system with low damping under short-period ground motions.


2020 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Fabio Mazza ◽  
Mirko Mazza

Elastomeric bearings are commonly used in base-isolation systems to protect the structures from earthquake damages. Their design is usually developed by using nonlinear models where only the effects of shear and compressive loads are considered, but uncertainties still remain about consequences of the tensile loads produced by severe earthquakes like the near-fault ones. The present work aims to highlight the relapses of tension on the response of bearings and superstructure. To this end, three-, seven- and ten-storey r.c. framed buildings are designed in line with the current Italian seismic code, with a base-isolation system constituted of High-Damping-Rubber Bearings (HDRBs) designed for three values of the ratio between the vertical and horizontal stiffnesses. Experimental and analytical results available in literature are used to propose a unified nonlinear model of the HDRBs, including cavitation and post-cavitation of the elastomer. Nonlinear incremental dynamic analyses of the test structures are carried out using a homemade computer code, where other models of HDRBs considering only some nonlinear phenomena are implemented. Near-fault earthquakes with comparable horizontal and vertical components, prevailing horizontal component and prevailing vertical component are considered as seismic input. Numerical results highlight that a precautionary estimation of response parameters of the HDRBs is attained referring to the proposed model, while its effects on the nonlinear response of the superstructure are less conservative.


2021 ◽  
Vol 879 ◽  
pp. 189-201
Author(s):  
M.A. Amir ◽  
N.H. Hamid

Recently, there are a lot of technological developments in the earthquake engineering field to reduce structural damage and one of them is a base isolation system. The base isolation system is one of the best technologies for the safety of human beings and properties under earthquake excitations. The aim of this paper is to review previous research works on simulation of base isolation systems for RC buildings and their efficiency in the safety of these buildings. Base isolation decouples superstructure from substructure to avoid transmission of seismic energy to the superstructure of RC buildings. The most effective way to assess the base isolation system for RC building under different earthquake excitations is by conducting experiment work that consumes more time and money. Many researchers had studied the behavior of base isolation system for structure through modeling the behavior of the base isolation in which base isolator is modeled through numerical models and validated through experimental works. Previous researches on the modeling of base isolation systems of structures had shown similar outcomes as the experimental work. These studies indicate that base isolation is an effective technology in immunization of structures against earthquakes.


Sign in / Sign up

Export Citation Format

Share Document