High efficiency CIGS solar cells on flexible stainless steel substrate with SiO2 diffusion barrier layer

Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 1033-1039
Author(s):  
Chen Zhang ◽  
Tongqing Qi ◽  
Wei Wang ◽  
Chenchen Zhao ◽  
Shuda Xu ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 370
Author(s):  
Hyun-Jae Woo ◽  
Woo-Jae Lee ◽  
Eun-Kyong Koh ◽  
Seung Il Jang ◽  
Shinho Kim ◽  
...  

Plasma-enhanced atomic layer deposition (PEALD) of TiN thin films were investigated as an effective Se diffusion barrier layer for Cu (In, Ga) Se2 (CIGS) solar cells. Before the deposition of TiN thin film on CIGS solar cells, a saturated growth rate of 0.67 Å/cycle was confirmed using tetrakis(dimethylamido)titanium (TDMAT) and N2 plasma at 200 °C. Then, a Mo (≈30 nm)/PEALD-TiN (≈5 nm)/Mo (≈600 nm) back contact stack was fabricated to investigate the effects of PEALD-TiN thin films on the Se diffusion. After the selenization process, it was revealed that ≈5 nm-thick TiN thin films can effectively block Se diffusion and that only the top Mo layer prepared on the TiN thin films reacted with Se to form a MoSe2 layer. Without the TiN diffusion barrier layer, however, Se continuously diffused along the grain boundaries of the entire Mo back contact electrode. Finally, the adoption of a TiN diffusion barrier layer improved the photovoltaic efficiency of the CIGS solar cell by approximately 10%.


2016 ◽  
Vol 145 ◽  
pp. 368-374 ◽  
Author(s):  
Kwang Hoon Jung ◽  
Sun Jin Yun ◽  
Seong Hyun Lee ◽  
Yoo Jeong Lee ◽  
Kyu-Sung Lee ◽  
...  

2014 ◽  
Vol 1604 ◽  
Author(s):  
Ying-Chung Chen ◽  
Wei-Tsai Chang ◽  
Chien-Chuan Cheng ◽  
Chun-Kai Mao ◽  
Kuo-Sheng Kao

ABSTRACTThis paper reports a novel means of integrating a high-performance dual-modal ZnO piezoelectric transducer with a flexible stainless steel substrate (SUS304) to construct dual-modal vibration-power transducers. To fabricate vibration-power transducers, the off-axis RF magnetron sputtering method for the growth of ZnO piezoelectric thin films is adopted. The stainless steel substrate has a higher Young’s modulus than those of the other substrates, and behaves the long-term stability under vibration. The transducer includes a ZnO piezoelectric thin film deposited on the stainless steel substrate combined with Pt/Ti layers at room temperature, which is fabricated by an RF magnetron two-step sputtering system. In this report, the ZnO piezoelectric thin films deposited with the tilting angle of 34° are set by controlling the deposition parameters. Scanning electron microscopy and X-ray diffraction of ZnO piezoelectric thin films reveal a rigid surface structure and a high dual-modal orientation. To investigate the generating characteristics of the dual-modal transducer, two basic experiments of longitudinal and shear modes are carried out. Based on cantilever vibration theory, the cantilever length of 1 cm and a vibration area of 1 cm2 are used to fabricate a transducer with a low resonant-frequency of 65 Hz for the natural vibration. A mass loading at the front-end of the cantilever is critical to increase the amplitude of vibration and the power generated by the piezoelectric transducer. The maximum open circuit voltage of the power transducer is 19.4 V.


Sign in / Sign up

Export Citation Format

Share Document