Enhanced thermoelectric properties of electrodeposited Bi2Te3 thin films using TiN diffusion barrier layer on a stainless-steel substrate and thermal annealing

2020 ◽  
Vol 714 ◽  
pp. 138356
Author(s):  
Rikuo Eguchi ◽  
Hiroki Yamamuro ◽  
Masayuki Takashiri
Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 1033-1039
Author(s):  
Chen Zhang ◽  
Tongqing Qi ◽  
Wei Wang ◽  
Chenchen Zhao ◽  
Shuda Xu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 370
Author(s):  
Hyun-Jae Woo ◽  
Woo-Jae Lee ◽  
Eun-Kyong Koh ◽  
Seung Il Jang ◽  
Shinho Kim ◽  
...  

Plasma-enhanced atomic layer deposition (PEALD) of TiN thin films were investigated as an effective Se diffusion barrier layer for Cu (In, Ga) Se2 (CIGS) solar cells. Before the deposition of TiN thin film on CIGS solar cells, a saturated growth rate of 0.67 Å/cycle was confirmed using tetrakis(dimethylamido)titanium (TDMAT) and N2 plasma at 200 °C. Then, a Mo (≈30 nm)/PEALD-TiN (≈5 nm)/Mo (≈600 nm) back contact stack was fabricated to investigate the effects of PEALD-TiN thin films on the Se diffusion. After the selenization process, it was revealed that ≈5 nm-thick TiN thin films can effectively block Se diffusion and that only the top Mo layer prepared on the TiN thin films reacted with Se to form a MoSe2 layer. Without the TiN diffusion barrier layer, however, Se continuously diffused along the grain boundaries of the entire Mo back contact electrode. Finally, the adoption of a TiN diffusion barrier layer improved the photovoltaic efficiency of the CIGS solar cell by approximately 10%.


2016 ◽  
Vol 23 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Kristian Myhre ◽  
Jonathan Burns ◽  
Harry Meyer ◽  
Nathan Sims ◽  
Rose Boll

2017 ◽  
Vol 69 (2) ◽  
pp. 182-189
Author(s):  
Lubomir Krabac ◽  
Vladimir Pejaković ◽  
Vladislav Drinek ◽  
Nicole Dörr ◽  
Ewald Badisch

Purpose The purpose of this paper is to study the friction and wear behavior of germanium (Ge) thin films deposited by low-pressure chemical vapor deposition method on a chromium (Cr)-nickel (Ni) stainless steel substrate after being exposed to relatively mild sliding conditions (low loads and sliding distances). Design/methodology/approach Wear and friction experiments were conducted with a 100Cr6 steel ball sliding against flat Ge thin-film-coated stainless steel sheets (ball-on-flat microtribometer, no lubricant, normal loads of 50-100 mN, initial Hertzian contact pressures of 385-485 MPa, total sliding distance up to 200 mm and room temperature). Findings Scanning electron microscopy results revealed that prepared Ge thin films consisted of two different morphologies: curved nanowires and cone-shaped nano-/microdroplets. Regarding friction and wear characteristics of the investigated samples, the substrates coated with Ge thin films did not affect the coefficient of friction significantly by load. The wear of the base material (Cr-Ni stainless steel) was not observed under the mentioned experimental conditions (see the “Design/methodology/approach” section); however, with increased sliding distance and/or applied load, a rupture of the Ge film and an exposure of the stainless steel substrate to the 100Cr6 ball can be expected. Furthermore, the observations suggest that the smearing of Ge nano- and microstructures, plastically deformed during tribotesting, over the surface exposed to the sliding contact is the dominant tribological process. Originality/value For the first time, the tribological interaction between Ge thin film and steel surface was investigated under dry sliding conditions using a ball-on-flat microtribometer, and the obtained results provide a useful base for the further research on tribology of Ge-based thin films.


Sign in / Sign up

Export Citation Format

Share Document