Insight into the core–shell structures of Cu–In–S microspheres

2013 ◽  
Vol 26 ◽  
pp. 23-30 ◽  
Author(s):  
Angela S. Wochnik ◽  
Anna Frank ◽  
Christoph Heinzl ◽  
Jonas Häusler ◽  
Julian Schneider ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 867
Author(s):  
Lin Guo ◽  
Zhu Mao ◽  
Sila Jin ◽  
Lin Zhu ◽  
Junqi Zhao ◽  
...  

Surface-enhanced Raman scattering (SERS) is a powerful tool in charge transfer (CT) process research. By analyzing the relative intensity of the characteristic bands in the bridging molecules, one can obtain detailed information about the CT between two materials. Herein, we synthesized a series of Au nanorods (NRs) with different length-to-diameter ratios (L/Ds) and used these Au NRs to prepare a series of core–shell structures with the same Cu2O thicknesses to form Au NR–4-mercaptobenzoic acid (MBA)@Cu2O core–shell structures. Surface plasmon resonance (SPR) absorption bands were adjusted by tuning the L/Ds of Au NR cores in these assemblies. SERS spectra of the core-shell structure were obtained under 633 and 785 nm laser excitations, and on the basis of the differences in the relative band strengths of these SERS spectra detected with the as-synthesized assemblies, we calculated the CT degree of the core–shell structure. We explored whether the Cu2O conduction band and valence band position and the SPR absorption band position together affect the CT process in the core–shell structure. In this work, we found that the specific surface area of the Au NRs could influence the CT process in Au NR–MBA@Cu2O core–shell structures, which has rarely been discussed before.


2019 ◽  
Vol 7 (5) ◽  
pp. 1280-1291 ◽  
Author(s):  
Alaka Panda ◽  
R. Govindaraj ◽  
R. Mythili ◽  
G. Amarendra

Bismuth and iron oxides subjected to ball milling followed by controlled annealing treatments showed the formation of core–shell nanostructures with Bi2Fe4O9 as the core and a shell of BiFeO3 and Bi25FeO40 phases as deduced based on the analysis of transmission electron microscopy results.


2017 ◽  
Vol 36 (4) ◽  
pp. 01 ◽  
Author(s):  
Vagner Sargentelli ◽  
Antônio A. P. Ferreira

Nanotechnology is the understanding and control f matter at dimensions of roughly 1 – 100 nm. At the nanoscale, the properties like electrical conductivity and mechanical strength are not the same as the materials with particles in dimensions much more than 100 nm. The electronic structure changes dramatically too. Between nanomaterials, there is recently a great number of works that investing as the synthesis as the properties of the magnetic nanoparticles. The interest in these materials is due to its magnetic applications. Some of more representative magnetic materials are the metallic oxides, as some ferrites. However, the ferrites are often obtained as mixture of some oxides, which implies that the magnetic properties are not always well defined and reproducible. Thus, the researches has been turned to use of the magnetic metals, between which the cobalt. The cobalt is investigated because its high magnetic susceptility. However, this transition metal is easily oxidate in air and is toxic to human organism. For this reason, it has looked for to effect synthesis involving core – shell structures, which no to allow the oxidation of the cobalt and prevent against its toxicity. Between the shells that come being obtained it is of silica and of gold. In addition, in if treating to catalysis in a general way, the price of the cobalt and its magnetic properties are adjusted for the attainment core – shell catalysts, Cocore@Ptshell, (Co@Pt). So, the aim of this article is to present and to do an analysis of the more representative synthetic route used until the present moment to obtain the core – shell structures: Co@SiO2, Co@Au and Co@Pt.


2019 ◽  
Vol 123 (10) ◽  
pp. 6018-6029 ◽  
Author(s):  
Zhaofeng Zhai ◽  
Nan Huang ◽  
Bing Yang ◽  
Chun Wang ◽  
Lusheng Liu ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 315-325 ◽  
Author(s):  
Sabine Schneider ◽  
Falco Jung ◽  
Olga Mergel ◽  
Janik Lammertz ◽  
Anne C. Nickel ◽  
...  

Modelling and synthesis go hand in hand to efficiently engineer copolymer microgels with various architectures: core–shell structures (with ferrocene mainly in the core or in the shell) and also microgels with homogeneous comonomer distribution.


2019 ◽  
Vol 7 (8) ◽  
pp. 3516-3530 ◽  
Author(s):  
Kuo-Chuan Ho ◽  
Lu-Yin Lin

This review article outlines the most commonly used methods for making the core/shell structures as the active materials for supercapacitors over the past decade (2007–2018), and points out the most efficient combination of the material categories and morphologies for the core/shell structure.


2017 ◽  
Vol 24 (4) ◽  
pp. 825-835 ◽  
Author(s):  
Chandrani Nayak ◽  
D. Bhattacharyya ◽  
K. Bhattacharyya ◽  
A. K. Tripathi ◽  
R. D. Bapat ◽  
...  

Au–Pt bimetallic nanoparticles have been synthesized through a one-pot synthesis route from their respective chloride precursors using block copolymer as a stabilizer. Growth of the nanoparticles has been studied by simultaneousin situmeasurement of X-ray absorption spectroscopy (XAS) and UV–Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at Indus-2 SRS at RRCAT, Indore, India.In situXAS spectra, comprising both X-ray near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) parts, have been measured simultaneously at the Au and PtL3-edges. While the XANES spectra of the precursors provide real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed in the intermediate stages of growth. This insight into the formation process throws light on how the difference in the reduction potential of the two precursors could be used to obtain the core–shell-type configuration of a bimetallic alloy in a one-pot synthesis method. The core–shell-type structure of the nanoparticles has also been confirmed byex situenergy-dispersive spectroscopy line-scan and X-ray photoelectron spectroscopy measurements within situion etching on fully formed nanoparticles.


2012 ◽  
Vol 30 (12) ◽  
pp. 1276-1280 ◽  
Author(s):  
Sicheng CHEN ◽  
Changrong LI ◽  
Guangli LIAN ◽  
Cuiping GUO ◽  
Zhenmin DU

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 955-968
Author(s):  
Yamin Wu ◽  
Yang Huang ◽  
Pujuan Ma ◽  
Lei Gao

The tunable optical pulling force on a graded plasmonic core-shell nanoparticle consisting of a gain dielectric core and graded plasmonic shell is investigated in the illumination of a plane wave. In this paper, the electrostatic polarizability and the equivalent permittivity of the core-shell sphere are derived and the plasmonic enhanced optical pulling force in the antibonding and bonding dipole modes of the graded nanoparticle are demonstrated. Additionally, the resonant pulling force occurring on the dipole mode is shown to be dependent on the aspect ratio of the core-shell particle, which is illustrated by the obtained equivalent permittivity. This shows that the gradation of the graded shell will influence the plasmonic feature of the particle, thus further shifting the resonant optical force peaks and strengthening the pulling force. The obtained results provide an additional degree of freedom to manipulate nanoparticles and give a deep insight into light–matter interaction.


Sign in / Sign up

Export Citation Format

Share Document