Contact resistance at ceramic interfaces and its dependence on mechanical load

2004 ◽  
Vol 168 (1-2) ◽  
pp. 1-11 ◽  
Author(s):  
S Koch
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2079
Author(s):  
Chao Zhang ◽  
Wanbin Ren

Low and stable contact resistance of metal electrode materials is mainly demanded for reliable and long lifetime electrical engineering. A novel test rig is developed in order to realize the high-throughput measurement of the contact resistance with the adjustable mechanical load force and load current. The contact potential drop is extracted accurately based on the proposed periodical current chopping (PCC) method in addition to the sliding window average filtering algorithm. The instrument is calibrated by standard resistors of 1 mΩ, 10 mΩ, and 100 mΩ with the accuracy of 0.01% and the associated measurement uncertainty is evaluated systematically. Furthermore, the contact resistance between standard indenter and rivet specimen is measured by the commercial DMM-based instruments and our designed test rig for comparison. The variations in relative expanded uncertainty of the measured contact resistance as a function of various mechanical load force and load current are presented.


Author(s):  
John G. Michopoulos ◽  
Marcus Young ◽  
Athanasios Iliopoulos ◽  
Harry N. Jones

In an effort to address the validation of a recently developed multifield and multiscale rough contact theory we are applying it for a particular experiment. The experiment involves the contact between two hollow cylinders with an annular disk in between them. The contact surface is rough and the entire stack is exposed to compressive mechanical load and a high electric current pulse. Solving the necessary multi-physics partial differential equations leads to establishing the spatiotemporal distribution of relevant fields and the identification of the contact resistance as a function of mechanical pressure and current. In addition to providing typical results for all selected fields present during the experiment and the simulation, we also provide a comparison between the experimentally acquired resistance histories with the numerically derived ones to address validation aspects of the general multiphysics contact theory.


Author(s):  
A.K. Rai ◽  
A.K. Petford-Long ◽  
A. Ezis ◽  
D.W. Langer

Considerable amount of work has been done in studying the relationship between the contact resistance and the microstructure of the Au-Ge-Ni based ohmic contacts to n-GaAs. It has been found that the lower contact resistivity is due to the presence of Ge rich and Au free regions (good contact area) in contact with GaAs. Thus in order to obtain an ohmic contact with lower contact resistance one should obtain a uniformly alloyed region of good contact areas almost everywhere. This can possibly be accomplished by utilizing various alloying schemes. In this work microstructural characterization, employing TEM techniques, of the sequentially deposited Au-Ge-Ni based ohmic contact to the MODFET device is presented.The substrate used in the present work consists of 1 μm thick buffer layer of GaAs grown on a semi-insulating GaAs substrate followed by a 25 Å spacer layer of undoped AlGaAs.


2018 ◽  
Author(s):  
Grischa Bratke ◽  
Steffen Willwacher ◽  
David Maintz ◽  
Gert-Peter Brüggemann

2003 ◽  
Vol 764 ◽  
Author(s):  
D.N. Zakharov ◽  
Z. Liliental-Weber ◽  
A. Motayed ◽  
S.N. Mohammad

AbstractOhmic Ta/Ti/Ni/Au contacts to n-GaN have been studied using high resolution electron microscopy (HREM), energy dispersive X-ray spectrometry (EDX) and electron energy loss spectrometry (EELS). Two different samples were used: A - annealed at 7500C withcontact resistance 5×10-6 Ω cm2 and B-annealed at 7750C with contact resistance 6×10-5 Ω cm2. Both samples revealed extensive in- and out-diffusion between deposited layers with some consumption ofGaNlayerand formation of TixTa1-xN50 (0<x<25) at the GaN interface. Almost an order of magnitude difference in contact resistances can be attributed to structure and chemical bonding of Ti-O layers formed on the contact surfaces.


2012 ◽  
Vol E95.C (9) ◽  
pp. 1531-1534 ◽  
Author(s):  
Kiyoshi YOSHIDA ◽  
Koichiro SAWA ◽  
Kenji SUZUKI ◽  
Masaaki WATANABE

Sign in / Sign up

Export Citation Format

Share Document