Identification of S-acyl glutathione conjugates of bile acids in human bile by means of LC/ESI-MS

Steroids ◽  
2011 ◽  
Vol 76 (14) ◽  
pp. 1609-1614 ◽  
Author(s):  
Kuniko Mitamura ◽  
Naohiro Hori ◽  
Takashi Iida ◽  
Mitsuyoshi Suzuki ◽  
Toshiaki Shimizu ◽  
...  
2019 ◽  
Vol 10 (5) ◽  
pp. 497-509 ◽  
Author(s):  
T. Culpepper ◽  
C.C. Rowe ◽  
C.T. Rusch ◽  
A.M. Burns ◽  
A.P. Federico ◽  
...  

Microbial metabolism in the gut may alter human bile acid metabolism in a way that beneficially affects lipid homeostasis and therefore cardiovascular disease risk. Deconjugation of bile acids by microbes is thought to be key to this mechanism but has yet to be characterised in blood and stool while observing lipid markers. The aim of this study was to determine the effect of 3 different probiotic strains on plasma and stool bile acids in the context of lipid and glucose metabolism. In this 18-week, randomised, double-blind crossover study, healthy adults (53±8 years) with a high waist circumference underwent a 1-week pre-baseline period and were then randomised to receive 1 capsule/day of Bacillus subtilis R0179 (2.5×109 cfu/capsule; n=39), Lactobacillus plantarum HA-119 (5×109 cfu/capsule; n=38), Bifidobacterium animalis subsp. lactis B94 (5×109 cfu/capsule; n=37) or placebo for 6 weeks. Following a 3-week washout and second pre-baseline week, participants were crossed to the other intervention for 6 weeks followed by a 1-week post-intervention period. Blood and stool samples were collected at the beginning and end of each intervention to measure bile acids, serum lipid profiles, and glucose and insulin levels. Data from the placebo intervention were combined for all participants for analyses. In obese participants, the difference (final-baseline) in the sum of deconjugated plasma bile acids was greater with consumption of B. subtilis (691±378 nmol/l, P=0.01) and B. lactis (380±165 nmol/l, P=0.04) than with placebo (98±176 nmol/l, n=57). No significant differences were observed for any probiotics for stool bile acids, serum lipids, blood glucose or insulin. These data suggest that B. subtilis and B. lactis had no effect on glucose metabolism or serum cholesterol but increased deconjugated plasma bile acids in obese individuals. Additional studies should be conducted to confirm these findings and explore potential mechanisms. This trial was registered at clinicaltrials.gov as NCT01879098.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Anqi Zhao ◽  
Xuhuiqun Zhang ◽  
Amandeep Sandhu ◽  
Indika Edirisinghe ◽  
Barbara Shukitt-Hale ◽  
...  

Abstract Objectives Bile acids (BAs) play a critical role in regulating human health through the activation of BAs receptor farnesoid X receptor (FXR) and membrane G protein coupled bile acid receptor-1 (TGR5). We aimed to develop methods to characterize BAs and their metabolites in human biological samples and characterize changes in BAs profile after chronic polyphenol consumption to help guide investigations on the potential health effects of polyphenols via BAs metabolism. Methods Plasma, fecal and urine samples from two human studies that included berry intake were used for developing qualitative analysis of BAs using ultra high-performance liquid chromatography (UHPLC) coupled with electrospray ionization quadrupole time of flight (QTOF). The compounds were identified based on the exact mass, fragmentation pattern, available reference standards and database search. To investigate the effect of chronic polyphenol consumption on BAs composition, pooled plasma samples (fasting and postprandial 2 h, n = 6) from a chronic (45 and 90 days) strawberry supplementation study (24 g freeze dried/day) with an older population were analyzed. Results Among 106 BAs and their metabolites which were tentatively identified in the samples used for method development, 70, 55, and 47 BAs species were characterized in plasma, feces and urine samples, respectively. The qualitative analysis of BAs in plasma samples from subjects following the strawberry consumption protocol detected 8 primary and 31 secondary BAs. After 90-days strawberry supplementation, two secondary BAs–glycolithocholic acid and 9(11), (5β)-cholenic acid-3α, 12α-diol were decreased to undetectable levels in the pooled fasting sample and the FRX/TGR5 agonists, including chenodeoxycholic acid, deoxycholic acid, cholic acid, glycodeoxycholic acid and taurocholic acid, showed increasing peak areas at 2 h postprandial compared to fasting. Conclusions The changes in BAs profiles in fasting and postprandial plasma samples after chronic strawberry feeding suggest that strawberry polyphenols may alter BAs metabolism and the FXR/TGR5 signaling. Funding Sources This work was funded by the California Strawberry Commission, USDA Intramural Funds and various donor funds to the Center for Nutrition Research, IIT.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Asuka Hirai-Yuki ◽  
Lucinda Hensley ◽  
Jason K. Whitmire ◽  
Stanley M. Lemon

ABSTRACTHepatitis A virus (HAV) is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV) are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replicationin vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood) sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99%) progeny virions were released apically from Caco-2 cells, whereas basolateral (64%) versus apical (36%) release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (<0.02%/h) in HepG2-N6 cells, arguing against this as a mechanism for differences in membrane envelopment of serum versus fecal virus. High concentrations of human bile acids converted eHAV to nonenveloped virions, whereas virus present in bile from HAV-infectedIfnar1−/−Ifngr1−/−andMavs−/−mice banded over a range of densities extending from that of eHAV to that of nonenveloped virions. We conclude that nonenveloped virions shed in feces are derived from eHAV released across the canalicular membrane and stripped of membranes by the detergent action of bile acids within the proximal biliary canaliculus.IMPORTANCEHAV is a hepatotropic, fecally/orally transmitted picornavirus that can cause severe hepatitis in humans. Recent work reveals that it has an unusual life cycle. Virus is found in cell culture supernatant fluids in two mature, infectious forms: one wrapped in membranes (quasi-enveloped) and another that is nonenveloped. Membrane-wrapped virions circulate in blood during acute infection and are resistant to neutralizing antibodies, likely facilitating HAV dissemination within the liver. On the other hand, virus shed in feces is nonenveloped and highly stable, facilitating epidemic spread and transmission to naive hosts. Factors controlling the biogenesis of these two distinct forms of the virus in infected humans are not understood. Here we characterize vectorial release of quasi-enveloped virions from polarized epithelial cell cultures and provide evidence that bile acids strip membranes from eHAV following its secretion into the biliary tract. These results enhance our understanding of the life cycle of this unusual picornavirus.


1999 ◽  
Vol 67 (9) ◽  
pp. S595
Author(s):  
D P Foley ◽  
B R Collins ◽  
J C Magee ◽  
J L Platt ◽  
E Katz ◽  
...  

1966 ◽  
Vol 6 (6) ◽  
pp. 591-596 ◽  
Author(s):  
A.S. Truswell ◽  
W.D. Mitchell ◽  
S. McVeigh
Keyword(s):  

2005 ◽  
Vol 53 (6) ◽  
pp. 1441-1446 ◽  
Author(s):  
Omkar B. Ijare ◽  
B. S. Somashekar ◽  
G. A. Nagana Gowda ◽  
Ajay Sharma ◽  
V. K. Kapoor ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiulong Yan ◽  
Siyi Zhang ◽  
Shenghui Li ◽  
Guangyang Wang ◽  
Aiqin Zhang ◽  
...  

The microbes in human bile are closely related to gallbladder health and other potential disorders. Although the bile microbial community has been investigated by recent studies using amplicon or metagenomic sequencing technologies, the genomic information of the microbial species resident in bile is rarely reported. Herein, we isolated 138 bacterial colonies from the fresh bile specimens of four cholecystitis patients using a culturome approach and genomically characterized 35 non-redundant strains using whole-genome shotgun sequencing. The bile bacterial isolates spanned 3 classes, 6 orders, 10 families, and 14 genera, of which the members of Enterococcus, Escherichia–Shigella, Lysinibacillus, and Enterobacter frequently appeared. Genomic analysis identified three species, including Providencia sp. D135, Psychrobacter sp. D093, and Vibrio sp. D074, which are not represented in existing reference genome databases. Based on the genome data, the functional capacity between bile and gut isolates was compared. The bile strains encoded 5,488 KEGG orthologs, of which 4.9% were specific to the gut strains, including the enzymes involved in biofilm formation, two-component systems, and quorum-sensing pathways. A total of 472 antibiotic resistance genes (ARGs) were identified from the bile genomes including multidrug resistance proteins (42.6%), fluoroquinolone resistance proteins (12.3%), aminoglycoside resistance proteins (9.1%), and β-lactamase (7.2%). Moreover, in vitro experiments showed that some bile bacteria have the capabilities for bile salt deconjugation or biotransformation (of primary bile acids into secondary bile acids). Although the physiological or pathological significance of these bacteria needs further exploration, our works expanded knowledge about the genome, diversity, and function of human bile bacteria.


1990 ◽  
Vol 23 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Chi-Pui Pang ◽  
Shuk-Dai Mok ◽  
Ping-Kuen Lam ◽  
Jack Varma ◽  
Arthur K.C. Li

Sign in / Sign up

Export Citation Format

Share Document