A study on the effect of compaction on transport properties of soil gas and water. II: Soil pore structure indices

2014 ◽  
Vol 143 ◽  
pp. 180-187 ◽  
Author(s):  
P.H. Kuncoro ◽  
K. Koga ◽  
N. Satta ◽  
Y. Muto
1988 ◽  
Vol 53 (6) ◽  
pp. 1217-1228
Author(s):  
Petr Uchytil ◽  
Petr Schneider

Transport characteristics of four porous samples with bidisperse or broad monodisperse pore structure were determined by combination of diffusion and permeation measurements with simple gases and compared with results obtained from diffusion of toluene or α,α,α-trifluorotoluene in cyclohexane in liquid phase. From comparison of both types of results it followed that all pores are decisive for the rate of diffusional transport in liquids, whereas only the wide transport pores are significant in gas diffusion.


2021 ◽  
Author(s):  
Ana M. C. Ilie ◽  
Tissa H. Illangasekare ◽  
Kenichi Soga ◽  
William R. Whalley

<p>Understanding the soil-gas migration in unsaturated soil is important in a number of problems that include carbon loading to the atmosphere from the bio-geochemical activity and leakage of gases from subsurface sources from carbon storage unconventional energy development. The soil water dynamics in the vadose zone control the soil-gas pathway development and, hence, the gas flux's spatial and temporal distribution at the soil surface. The spatial distribution of soil-water content depends on soil water characteristics. The dynamics are controlled by the water flux at the land surface and water table fluctuations. Physical properties of soil give a better understanding of the soil gas dynamics and migration from greater soil depths. The fundamental process of soil gas migration under dynamic water content was investigated in the laboratory using an intermediate-scale test system under controlled conditions that is not possible in the field. The experiments focus on observing the methane gas migration in relation to the physical properties of soil and the soil moisture patterns. A 2D soil tank with dimensions of 60 cm × 90 cm × 5.6 cm (height × length × width) was used.  The tank was heterogeneously packed with sandy soil along with a distributed network of soil moisture, temperature, and electrical conductivity sensors. The heterogeneous soil configuration was designed using nine uniform silica sands with the effective sieve numbers #16, #70, #8, #40/50, #110, #30/40, #50, and #20/30 (Accusands, Unimin Corp., Ottawa, MN), and a porosity ranging in values from 0.31 to 0.42. Four methane infrared gas sensors and a Flame Ionization detector (HFR400 Fast FID) were used for the soil gas sampling at different depths within the soil profiles and at the land surface.  A complex transient soil moisture distribution and soil gas migration patterns were observed in the 2D tank. These processes were successfully captured by the sensors. These preliminary experiments helped us to understand the mechanism of soil moisture sensor response and methane gas migration into a heterogeneous sandy soil with a view to developing a large-scale test in a 3D tank (4.87 m × 2.44 m × 0.40 m) and finally transition to field deployment.</p>


2000 ◽  
Vol 33 (3) ◽  
pp. 198-206 ◽  
Author(s):  
S. O. Nwaubani ◽  
M. Mulheron ◽  
G. P. Tilly ◽  
B. Schwamborn

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jae-Yeol Hwang ◽  
Eun Sung Kim ◽  
Syed Waqar Hasan ◽  
Soon-Mok Choi ◽  
Kyu Hyoung Lee ◽  
...  

Highly dense pore structure was generated by simple sequential routes using NaCl and PVA as porogens in conventional PbTe thermoelectric materials, and the effect of pores on thermal transport properties was investigated. Compared with the pristine PbTe, the lattice thermal conductivity values of pore-generated PbTe polycrystalline bulks were significantly reduced due to the enhanced phonon scattering by mismatched phonon modes in the presence of pores (200 nm–2 μm) in the PbTe matrix. We obtained extremely low lattice thermal conductivity (~0.56 W m−1 K−1at 773 K) in pore-embedded PbTe bulk after sonication for the elimination of NaCl residue.


2018 ◽  
Vol 174 ◽  
pp. 01014
Author(s):  
Alicja Wieczorek ◽  
Marcin Koniorczyk

The purpose of the study is to understand how the cyclic water freezing (0, 25, 50, 75, 100 and 150 freeze-thaw cycles) impacts microstructure and transport properties of cement-based materials. Tests were conducted on cement mortars with different water/cement ratios (w/c=0.45 and 0.40) and on two types of cement (CEM I and CEM III) without air-entraining admixtures. The changes of pore size distribution and open porosity were investigated by means of mercury intrusion porosimetry. Additionally, the relationship between intrinsic permeability and the water absorption coefficient of cement mortar samples was analysed. The water absorption coefficient and gas permeability were determined using capillary absorption test and the modified RILEMCembureau method. The evolution of transport coefficients with growing number of freeze-thaw cycles were determined on the same sample. It was also established that change of pore structure (a decrease of small pore volume <100nm and increase of larger pores >100nm) induces an increase of water transport parameters such as permeability and water absorption coefficient. The higher gas permeability corresponds to the higher internal damage. In particular, it is associated with the change of cement mortar microstructure, which indicates damage of narrow channels in the pore structure of cement mortars.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4543
Author(s):  
Panagiota Alafogianni ◽  
Konstantinos Dassios ◽  
Christos D. Tsakiroglou ◽  
Theodore E. Matikas ◽  
Nektaria-Marianthi Barkoula

Τhe present study investigates the pore structure and transport properties of carbon nanotube-modified cementitious mortars after exposure to freeze-thaw cycles and immersion to sulfate ion solution (sulfate attack) and compares them to those of un-exposed mortars. The effect of parameters related to carbon nanotube content (within the range of 0.2–0.8 wt.%) and type of dispersant (superplasticizer/surfactant) are investigated. It is found that carbon nanotube inclusion results, overall, in a significant drop of the total porosity before exposure. Results demonstrate that environmental exposure leads to a reduction of the fraction of small diameter pores and a respective increase in capillary porosity for both dispersive agents compared to un-exposed specimens. Diffusion coefficients of nano-modified specimens are lower compared to those of un-modified mortars, both before exposure and after sulfate attack. In the case of freeze-thaw cycling, the diffusion coefficients were found to be higher in carbon nanotube-modified mortars when surfactants were used as dispersants, although with improved gas permeability values.


2012 ◽  
Vol 25 (7) ◽  
pp. 2315-2321
Author(s):  
C. K. Piumbini ◽  
F. Deleprani ◽  
J. Quispe-Marcatoma ◽  
A. Takeuchi ◽  
W. L. Scopel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document