scholarly journals The influence of type of cement on the degradation of microstructure and transport properties of cement mortars exposed to frost induced damage

2018 ◽  
Vol 174 ◽  
pp. 01014
Author(s):  
Alicja Wieczorek ◽  
Marcin Koniorczyk

The purpose of the study is to understand how the cyclic water freezing (0, 25, 50, 75, 100 and 150 freeze-thaw cycles) impacts microstructure and transport properties of cement-based materials. Tests were conducted on cement mortars with different water/cement ratios (w/c=0.45 and 0.40) and on two types of cement (CEM I and CEM III) without air-entraining admixtures. The changes of pore size distribution and open porosity were investigated by means of mercury intrusion porosimetry. Additionally, the relationship between intrinsic permeability and the water absorption coefficient of cement mortar samples was analysed. The water absorption coefficient and gas permeability were determined using capillary absorption test and the modified RILEMCembureau method. The evolution of transport coefficients with growing number of freeze-thaw cycles were determined on the same sample. It was also established that change of pore structure (a decrease of small pore volume <100nm and increase of larger pores >100nm) induces an increase of water transport parameters such as permeability and water absorption coefficient. The higher gas permeability corresponds to the higher internal damage. In particular, it is associated with the change of cement mortar microstructure, which indicates damage of narrow channels in the pore structure of cement mortars.

2018 ◽  
Vol 49 ◽  
pp. 00128
Author(s):  
Alicja Wieczorek ◽  
Marcin Koniorczyk ◽  
Dalia Bednarska ◽  
Kalina Grabowska

The parameters characterizing the microstructure of cementbased materials, such as porosity or permeability, determine not only durability, but also risk of degradation of the cement matrix due to an aggressive environment. The report presents results of a research on transport properties of cement mortars subjected to cyclic water freezing. Mortars prepared on the basis of two different cements were the object of the research: Portland cement CEM I 42.5R and Portland blast-furnace slag cement CEM III/A 42.5N LH/HSR/NA, with two water-cement ratio (w/c=0.45 and 0.40). The experimental study was carried out in order to determine the relationship between intrinsic permeability and the water absorption coefficient in relation to the number of freeze-thaw cycles. The evolution of transport coefficients was determined using a capillary absorption test and the modified RILEM-Cembureau method. It was established that the degradation processes induced an increase of transport properties. Moreover, the microcracks had a more significant influence on permeability and lesser influence on the water absorption coefficient. The gas permeability of damaged mortar changed very significantly, an increase with several orders of magnitude could be noticed. Moreover, the positive impact of CEM III on ice-induced degradation was also visible.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4543
Author(s):  
Panagiota Alafogianni ◽  
Konstantinos Dassios ◽  
Christos D. Tsakiroglou ◽  
Theodore E. Matikas ◽  
Nektaria-Marianthi Barkoula

Τhe present study investigates the pore structure and transport properties of carbon nanotube-modified cementitious mortars after exposure to freeze-thaw cycles and immersion to sulfate ion solution (sulfate attack) and compares them to those of un-exposed mortars. The effect of parameters related to carbon nanotube content (within the range of 0.2–0.8 wt.%) and type of dispersant (superplasticizer/surfactant) are investigated. It is found that carbon nanotube inclusion results, overall, in a significant drop of the total porosity before exposure. Results demonstrate that environmental exposure leads to a reduction of the fraction of small diameter pores and a respective increase in capillary porosity for both dispersive agents compared to un-exposed specimens. Diffusion coefficients of nano-modified specimens are lower compared to those of un-modified mortars, both before exposure and after sulfate attack. In the case of freeze-thaw cycling, the diffusion coefficients were found to be higher in carbon nanotube-modified mortars when surfactants were used as dispersants, although with improved gas permeability values.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qi Gao ◽  
Zhiming Ma ◽  
Jianzhuang Xiao ◽  
Fuan Li

Capillary water absorption of concrete is closely related to its pore structure, permeability, and durability. This paper intensively investigates the effects of imposed damage, including freeze-thaw damage and loading damage, on the capillary water absorption of recycled aggregate concrete (RAC). Freeze-thaw cycle test, loading test, and the experiment of capillary water absorption were carried out, respectively. The results demonstrate that the addition of recycled coarse aggregate (RCA) results in the increase in the capillary absorption behavior of RAC without imposed damage, and there exists a linear correlation between the behaviors of capillary water absorption and chloride penetration of RAC. The imposed freeze-thaw damage or load damage of RAC boosts with the increase of RCA replacement percentages after suffering the same freeze-thaw cycles or loading level. The imposed freeze-thaw damage and load damage further lead to the increase in the capillary water absorption of RAC, and the capillary absorption coefficient of RAC increases linearly with the increased RCA replacement percentages, after suffering the same freeze-thaw cycles or loading level. Furthermore, capillary absorption coefficient increases linearly with the growth of imposed freeze-thaw damage or load damage degree, which can be used to estimate the capillary absorption behavior of RAC exposed to the extreme environment.


1997 ◽  
Vol 3 (3) ◽  
pp. 219-234
Author(s):  
M. Krus ◽  
A. Holm ◽  
Th. Schmidt

Abstract Computer calculations are of increasing importance for the assessment of moisture balance in building components, since modern calculation methods achieve good agreement with measurements. A broader application of these methods is hampered, however, by the laborious measurements needed to determine the capillary transport coefficients essential for the calculations. A new method is therefore presented which allows to estimate the coefficients from wellknown standard material properties (free capillary saturation, practical moisture content and water absorption coefficient). These coefficients are sufficient for estimative assessment of the moisture balance of many materials, as is demonstrated by comparison of suction profiles calculated in this way and measured profiles.


2014 ◽  
Vol 36 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Martin Ondrášik ◽  
Miloslav Kopecký

Abstract Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite. However, rock as any other material if exposed to exogenous processes starts to deteriorate. Especially mechanical weathering can be very intensive if rock with unsuitable rock properties is used. For long it had been believed that repeated freezing and thawing in relation to high absorption is the main reason of the rock deterioration. In Slovakia for many years the high water absorption was set as exclusion criterion for use of rocks and stones in building industry. Only after 1989 the absorption was accepted as merely informational rock property and not exclusion. The reason of the change was not the understanding of the relationship between the porosity and rock deterioration, but more or less good experiences with some high porous rocks used in constructions exposed to severe weather conditions and proving a lack of relationship between rock freeze-thaw resistivity and water absorption. Results of the recent worldwide research suggest that understanding a resistivity of rocks against deterioration is hidden not in the absorption but in the structure of rock pores in relation to thermodynamic properties of pore water and tensile strength of rocks and rock minerals. Also this article presents some results of research on rock deterioration and pore structure performed on 88 rock samples. The results divide the rocks tested into two groups - group N in which the pore water does not freeze even when the temperature decreases to -20 ºC, and the second group F in which the pore water freezes. It has been found that the rocks from group N contain critical portion of adsorbed water in pores which prevents freezing of the pore water. The presence of adsorbed water enables thermodynamic processes related to osmosis which are dominantly responsible for deterioration of rocks from group N. A high correlation (R = 0.81) between content of adsorbed water and freeze-thaw loss was proved and can be used as durability estimator of rocks from group N. The rock deterioration of group F is caused not only by osmosis, but also by some other processes and influences, such as hydraulic pressure, permeability, grain size, rock and mineral tensile strength, degree of saturation, etc., and the deterioration cannot be predicted yet without the freeze-thaw test. Since the contents of absorbed water and ratio between adsorbed and bulk water (of which the absorbed water consists) is controlled by the porosity and pore structure, it can be concluded that the deterioration of some rocks is strongly related to rock pore structure.


2010 ◽  
Vol 56 (1) ◽  
pp. 57-68 ◽  
Author(s):  
I. Hager ◽  
T. Tracz

Abstract This paper presents the results of research on high performance concretes (HPC) modified by the addition of polypropylene fibres (PP fibres). The scope of the research was the measurement of the residual transport properties of heated and recooled concretes: gas permeability and surface water absorption. Seven types of concrete modified with fibrillated PP fibres were tested. Three lengths: 6, 12 and 19 mm and three amounts of fibres: 0, 0.9 and 1.8 kg/m3 were used. The research programme was designed to determine which length of fibres, used in which minimum amount, will, after the fibres melt, permit the development of a connected network and pathway for gases and liquids.


Sign in / Sign up

Export Citation Format

Share Document