scholarly journals High temperature (900 °C) sliding wear of CrNiAlCY coatings deposited by high velocity oxy fuel thermal spray

Author(s):  
K. Derelizade ◽  
A. Rincon ◽  
F. Venturi ◽  
R.G. Wellman ◽  
A. Kholobysov ◽  
...  
2001 ◽  
Vol 15 (28n29) ◽  
pp. 1428-1436 ◽  
Author(s):  
W. TROMPETTER ◽  
A. MARKWITZ ◽  
M. HYLAND

Spray coatings are being used in an increasingly wide range of industries to improve the abrasive, erosive and sliding wear of machine components. Over the past decade industries have moved to the application of supersonic high velocity thermal spray techniques. These coating techniques produce superior coating quality in comparison to other traditional techniques such as plasma spraying. To date the knowledge of the bonding processes and the structure of the particles within thermal spray coatings is very subjective. The aim of this research is to improve our understanding of these materials through the use of IBA techniques in conjunction with other materials analysis techniques. Samples were prepared by spraying a widely used commercial NiCr powder onto substrates using a HVAF (high velocity air fuel) thermal spraying technique. Detailed analysis of the composition and structure of the power particles revealed two distinct types of particles. The majority was NiCr particles with a significant minority of particles composing of SiO 2/ CrO 3. When the particles were investigated both as raw powder and in the sprayed coating, it was surprising to find that the composition of the coating meterial remained unchanged during the coating process despite the high velocity application.


Author(s):  
R. Ahmed ◽  
O. Ali ◽  
C. C. Berndt ◽  
A. Fardan

AbstractThe global thermal spray coatings market was valued at USD 10.1 billion in 2019 and is expected to grow at a compound annual growth rate of 3.9% from 2020 to 2027. Carbide coatings form an essential segment of this market and provide cost-effective and environmental friendly tribological solutions for applications in aerospace, industrial gas turbine, automotive, printing, oil and gas, steel, and pulp and paper industries. Almost 23% of the world’s total energy consumption originates from tribological contacts. Thermal spray WC-Co coatings provide excellent wear resistance for industrial applications in sliding and rolling contacts. Some of these applications in abrasive, sliding and erosive conditions include sink rolls in zinc pots, conveyor screws, pump housings, impeller shafts, aircraft flap tracks, cam followers and expansion joints. These coatings are considered as a replacement of the hazardous chrome plating for tribological applications. The microstructure of thermal spray coatings is however complex, and the wear mechanisms and wear rates vary significantly when compared to cemented WC-Co carbides or vapour deposition WC coatings. This paper provides an expert review of the tribological considerations that dictate the sliding wear performance of thermal spray WC-Co coatings. Structure–property relationships and failure modes are discussed to grasp the design aspects of WC-Co coatings for tribological applications. Recent developments of suspension sprayed nanocomposite coatings are compared with conventional coatings in terms of performance and failure mechanisms. The dependency of coating microstructure, binder material, carbide size, fracture toughness, post-treatment and hardness on sliding wear performance and test methodology is discussed. Semiempirical mathematical models of wear rate related to the influence of tribological test conditions and coating characteristics are analysed for sliding contacts. Finally, advances for numerical modelling of sliding wear rate are discussed.


2018 ◽  
Vol 27 (7) ◽  
pp. 1143-1152 ◽  
Author(s):  
Yan Liu ◽  
Zongqiu Hang ◽  
Guiying Yang ◽  
Hao Fu ◽  
Naiyuan Xi ◽  
...  

CORROSION ◽  
10.5006/2802 ◽  
2018 ◽  
Vol 74 (9) ◽  
pp. 984-1000 ◽  
Author(s):  
Esmaeil Sadeghi ◽  
Nicolaie Markocsan ◽  
Tanvir Hussain ◽  
Matti Huhtakangas ◽  
Shrikant Joshi

NiCrMo coatings with and without dispersed SiO2 were deposited using high-velocity air-fuel technique. Thermogravimetric experiments were conducted in 5% O2 + 500 vppm HCl + N2 with and without a KCl deposit at 600°C for up to 168 h. The SiO2-containing coating showed lower weight change as a result of formation of a protective and adherent Cr-rich oxide scale. SiO2 decelerated short-circuit diffusion of Cr3+ through scale’s defects, e.g., vacancies, and promoted the selective oxidation of Cr to form the protective Cr-rich oxide scale. Furthermore, the presence of SiO2 led to less subsurface depletion of Cr in the coating, and accordingly less corrosion of the substrate. The formed corrosion product on the SiO2-free coating was highly porous, non-adherent, and thick.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Vineet Shibe ◽  
Vikas Chawla

Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.


Sign in / Sign up

Export Citation Format

Share Document