Nanoscale Friction of CVD Single-Layer MoS2 with Controlled Defect Formation

2021 ◽  
pp. 101437
Author(s):  
Min Gi Choi ◽  
Alex Belianinov ◽  
Alison Pawlicki ◽  
Seonha Park ◽  
Habeom Lee ◽  
...  
2011 ◽  
Vol 1363 ◽  
Author(s):  
G.J. Ackland ◽  
T.P.C. Klaver ◽  
D.J. Hepburn

ABSTRACTFirst principles calculations have given a new insight into the energies of point defects in many different materials, information which cannot be readily obtained from experiment. Most such calculations are done at zero Kelvin, with the assumption that finite temperature effects on defect energies and barriers are small. In some materials, however, the stable crystal structure of interest is mechanically unstable at 0K. In such cases, alternate approaches are needed. Here we present results of first principles calculations of austenitic iron using the VASP code. We determine an appropriate reference state for collinear magnetism to be the antiferromagnetic (001) double-layer (AFM-d) which is both stable and lower in energy than other possible models for the low temperature limit of paramagnetic fcc iron. Another plausible reference state is the antiferromagnetic (001) single layer (AFM-1). We then consider the energetics of dissolving typical alloying impurities (Ni, Cr) in the materials, and their interaction with point defects typical of the irradiated environment. We show that the calculated defect formation energies have fairly high dependence on the reference state chosen: in some cases this is due to instability of the reference state, a problem which does not seem to apply to AFM-d and AFM-1. Furthermore, there is a correlation between local free volume magnetism and energetics. Despite this, a general picture emerge that point defects in austenitic iron have geometries similar to those in simpler, non-magnetic, thermodynamically stable FCC metals. The defect energies are similar to those in BCC iron. The effect of substitutional Ni and Cr on defect properties is weak, rarely more than tenths of eV, so it is unlikely that small amounts of Ni and Cr will have a significant effect on the radiation damage in austenitic iron at high temperatures.


2014 ◽  
Vol 317 ◽  
pp. 745-751 ◽  
Author(s):  
A. Gao ◽  
E. Zoethout ◽  
J.M. Sturm ◽  
C.J. Lee ◽  
F. Bijkerk

2011 ◽  
Vol 1344 ◽  
Author(s):  
Desalegne Teweldebrhan ◽  
Guanxiong Liu ◽  
Alexander A. Balandin

ABSTRACTGraphene reveals many extraordinary properties including extremely high room temperature carrier mobility and intrinsic thermal conductivity. Understanding how to controllably modify graphene’s properties is essential for its proposed applications. Here we report on a method for tuning the electrical properties of graphene via electron beam irradiation. It was observed that single-layer graphene is highly susceptible to the low-energy electron beams. We demonstrated that by controlling the irradiation dose one can change, by desired amount, the carrier mobility, shift the charge neutrality point, increase the resistance at the minimum conduction point, induce the “transport gap” and achieve current saturation in graphene. The change in graphene properties is due to defect formation on the graphene surface and in the graphene lattice. The changes are reversible by annealing until some critical irradiation dose is reached.


2010 ◽  
Vol 645-648 ◽  
pp. 323-326 ◽  
Author(s):  
Masahiro Nagano ◽  
Hidekazu Tsuchida ◽  
Takuma Suzuki ◽  
Tetsuo Hatakeyama ◽  
Junji Senzaki ◽  
...  

Condition dependences of defect formation in 4H-SiC epilayer induced by the implantation/annealing process were investigated using synchrotron reflection X-ray topography and transmission electron microscopy. Nitrogen, phosphorus or aluminum ions were implanted in the 4H-SiC epilayers and then activation annealing was performed. To compare the implantation/annealing process, a sample receiving only the annealing treatment without the implantation was also performed. Two different crucibles (conventional and improved) were used in the annealing process. The formation of single layer Shockley-type stacking faults near the surface was found to have no ion-implantation condition or crucible dependence. The formation of BPD half-loops and the glide of pre-existing BPDs showed clear dependence on the crucibles.


Carbon ◽  
2009 ◽  
Vol 47 (14) ◽  
pp. 3201-3207 ◽  
Author(s):  
Giuseppe Compagnini ◽  
Filippo Giannazzo ◽  
Sushant Sonde ◽  
Vito Raineri ◽  
Emanuele Rimini

2021 ◽  
pp. 2141002
Author(s):  
Duo Wang ◽  
Lu Yang ◽  
Jianan Cao

In this paper, a first-principles calculation method based on density functional theory is used to study the effect of substitutional doping of Au, Ag, and Cu at Mo site on the magnetic properties of the single-layer MoS2 system. It is found that the Au, Ag, and Cu-doped systems can all exhibit ferromagnetic properties at room temperature. The calculation of defect formation energy and hybrid orbital theory confirms that the system can exist stably. After comparing the energy difference, it is concluded that the magnetic properties of the doped system are more stable in the spin-polarized state. The magnetic moment contributed by impurity atoms is limited. The Mo and S atoms near the impurity atoms are induced by the impurity atoms, and the magnetic moment of the system is mainly produced by this method. There is a ferromagnetic coupling between impurity atoms and surrounding Mo atoms.


Author(s):  
Judy Z Wu ◽  
Victor Ogunjimi ◽  
Mary Ann Sebastian ◽  
Di Zhang ◽  
Jie Jian ◽  
...  

Abstract One-dimensional c-axis-aligned BaZrO3 (BZO) nanorods are regarded as strong one-dimensional artificial pinning centers (1D-APCs) in BZO-doped YaBa2Cu3O7-x (BZO/YBCO) nanocomposite films. However, a microstructure analysis has revealed a defective, oxygen-deficient YBCO column around the BZO 1D-APCs due to the large lattice mismatch of ~7.7% between the BZO (3a=1.26 nm) and YBCO (c=1.17 nm), which has been blamed for the reduced pinning efficiency of BZO 1D-APCs. Herein, we report a dynamic lattice enlargement approach on the tensile strained YBCO lattice during the BZO 1D-APCs growth to induce c-axis elongation of the YBCO lattice up to 1.26 nm near the BZO 1D-APC/YBCO interface via Ca/Cu substitution on single Cu-O planes of YBCO, which prevents the interfacial defect formation by reducing the BZO/YBCO lattice mismatch to ~1.4%. Specifically, this is achieved by inserting thin Ca0.3Y0.7Ba2Cu3O7-x (CaY-123) spacers as the Ca reservoir in 2-6 vol.% BZO/YBCO nanocomposite multilayer (ML) films. A defect-free, coherent BZO 1D-APC/YBCO interface is confirmed in transmission electron microscopy and elemental distribution analyses. Excitingly, up to five-fold enhancement of Jc (B) at magnetic field B=9.0 T//c-axis and 65-77 K was obtained in the ML samples as compared to their BZO/YBCO single-layer (SL) counterpart’s. This has led to a record high pinning force density Fp together with significantly enhanced Bmax at which Fp reaches its maximum value Fp,max for BZO 1D-APCs at B//c-axis. At 65 K, the Fp,max ~158 GN/m3 and Bmax ~ 8.0 T for the 6% BZO/YBCO ML samples represent a significant enhancement over Fp,max ~36.1 GN/m3 and Bmax ~ 5.0 T for the 6% BZO/YBCO SL counterparts. This result not only illustrates the critical importance of a coherent BZO 1D-APC/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO 1D-APCs.


Author(s):  
Murray Stewart ◽  
T.J. Beveridge ◽  
D. Sprott

The archaebacterium Methanospirillum hungatii has a sheath as part of its cell wall which is composed mainly of protein. Treatment with dithiothreitol or NaOH released the intact sheaths and electron micrographs of this material negatively stained with uranyl acetate showed flattened hollow tubes, about 0.5 μm diameter and several microns long, in which the patterns from the top and bottom were superimposed. Single layers, derived from broken tubes, were also seen and were more simply analysed. Figure 1 shows the general appearance of a single layer. There was a faint axial periodicity at 28.5 A, which was stronger at irregular multiples of 28.5 A (3 and 4 times were most common), and fine striations were also seen at about 3° to the tube axis. Low angle electron diffraction patterns (not shown) and optical diffraction patterns (Fig. 2) from these layers showed a complex meridian (as a result of the irregular nature of the repeat along the tube axis) which showed a clear maximum at 28.5 A, consistent with the basic subunit spacing.


Author(s):  
H. Watanabe ◽  
B. Kabius ◽  
B. Roas ◽  
K. Urban

Recently it was reported that the critical current density(Jc) of YBa2Cu2O7, in the presence of magnetic field, is enhanced by ion irradiation. The enhancement is thought to be due to the pinning of the magnetic flux lines by radiation-induced defects or by structural disorder. The aim of the present study was to understand the fundamental mechanisms of the defect formation in association with the pinning effect in YBa2Cu3O7 by means of high-resolution electron microscopy(HRTEM).The YBa2Cu3O7 specimens were prepared by laser ablation in an insitu process. During deposition, a substrate temperature and oxygen atmosphere were kept at about 1073 K and 0.4 mbar, respectively. In this way high quality epitaxially films can be obtained with the caxis parallel to the <100 > SrTiO3 substrate normal. The specimens were irradiated at a temperature of 77 K with 173 MeV Xe ions up to a dose of 3.0 × 1016 m−2.


Sign in / Sign up

Export Citation Format

Share Document