Crystalline order to a resolution of 4.7 A in the sheath of Methanospirilium hungatii: A cross-beta structure

Author(s):  
Murray Stewart ◽  
T.J. Beveridge ◽  
D. Sprott

The archaebacterium Methanospirillum hungatii has a sheath as part of its cell wall which is composed mainly of protein. Treatment with dithiothreitol or NaOH released the intact sheaths and electron micrographs of this material negatively stained with uranyl acetate showed flattened hollow tubes, about 0.5 μm diameter and several microns long, in which the patterns from the top and bottom were superimposed. Single layers, derived from broken tubes, were also seen and were more simply analysed. Figure 1 shows the general appearance of a single layer. There was a faint axial periodicity at 28.5 A, which was stronger at irregular multiples of 28.5 A (3 and 4 times were most common), and fine striations were also seen at about 3° to the tube axis. Low angle electron diffraction patterns (not shown) and optical diffraction patterns (Fig. 2) from these layers showed a complex meridian (as a result of the irregular nature of the repeat along the tube axis) which showed a clear maximum at 28.5 A, consistent with the basic subunit spacing.

1967 ◽  
Vol 2 (4) ◽  
pp. 587-591
Author(s):  
J. T. FINCH ◽  
A. KLUG ◽  
M.V. NERMUT

Electron micrographs of negatively stained preparations of cell walls of Bacillus polymyxa have been investigated by optical diffraction and optical filtering techniques. Images of single layers of the cell wall, from which the ‘noise’ has been filtered optically, show hollow, square-shaped morphological units arranged on a square lattice of side 100 Å. Single-layer images showing the same pattern have been filtered from moiré patterns arising from two overlapping single layers. The morphological units are composed of four smaller subunits. The optical diffraction patterns from regions of two overlapping layers show extra reflexions which are attributed to multiple electron scattering.


Author(s):  
W. H. Wu

Aquaspirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits (HP-protein). Buckmire and Murray concluded that a “backing layer”, later identified to be the outer membrane, was required for HP-protein to form 2-d arrays.We developed a modified procedure of isolation of outer wall fragments. The yield was about 10 times increased, and patches with structured arrays were bigger and more frequent. Large, light arrays of good crystalline order were obtained, with which the optical diffraction patterns always show “handedness” (see Fig. 1); whereas with the dark patches, the optical diffraction patterns appear to be symmetrical. We conclude that the light arrays are real single layer protein arrays.


Author(s):  
G. H. Fraser ◽  
M. Hall ◽  
R. G. E. Murray ◽  
P. W. Whippey

A Pseudomonas species, isolated from a feeder culture for Euglena viridis, shows an unusual form of tetragonal array on the external surface of the cell wall in negatively stained preparations. These regular surface [RS] layers have been demonstrated on a variety of gram positive and gram negative bacteria and form the primary interface between the cell wall and its environment. It is thought to function as a protective barrier layer against predators and other deleterious agents such as enzymes.Ammonium molybdate was the most effective negative stain at relatively high concentrations (4-8% w/v); uranyl acetate did not display the RS layer. The micrographs were investigated with the aid of optical diffraction and digital image enhancement. Areas of micrographs that were free from obvious irregularities such as stacking faults and uneven staining were selected visually, Fig. 1(a).


Author(s):  
Glen B. Haydon

Analysis of light optical diffraction patterns produced by electron micrographs can easily lead to much nonsense. Such diffraction patterns are referred to as optical transforms and are compared with transforms produced by a variety of mathematical manipulations. In the use of light optical diffraction patterns to study periodicities in macromolecular ultrastructures, a number of potential pitfalls have been rediscovered. The limitations apply to the formation of the electron micrograph as well as its analysis.(1) The high resolution electron micrograph is itself a complex diffraction pattern resulting from the specimen, its stain, and its supporting substrate. Cowley and Moodie (Proc. Phys. Soc. B, LXX 497, 1957) demonstrated changing image patterns with changes in focus. Similar defocus images have been subjected to further light optical diffraction analysis.


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
George C. Ruben ◽  
William Krakow

Tobacco primary cell wall and normal bacterial Acetobacter xylinum cellulose formation produced a 36.8±3Å triple-stranded left-hand helical microfibril in freeze-dried Pt-C replicas and in negatively stained preparations for TEM. As three submicrofibril strands exit the wall of Axylinum , they twist together to form a left-hand helical microfibril. This process is driven by the left-hand helical structure of the submicrofibril and by cellulose synthesis. That is, as the submicrofibril is elongating at the wall, it is also being left-hand twisted and twisted together with two other submicrofibrils. The submicrofibril appears to have the dimensions of a nine (l-4)-ß-D-glucan parallel chain crystalline unit whose long, 23Å, and short, 19Å, diagonals form major and minor left-handed axial surface ridges every 36Å.The computer generated optical diffraction of this model and its corresponding image have been compared. The submicrofibril model was used to construct a microfibril model. This model and corresponding microfibril images have also been optically diffracted and comparedIn this paper we compare two less complex microfibril models. The first model (Fig. 1a) is constructed with cylindrical submicrofibrils. The second model (Fig. 2a) is also constructed with three submicrofibrils but with a single 23 Å diagonal, projecting from a rounded cross section and left-hand helically twisted, with a 36Å repeat, similar to the original model (45°±10° crossover angle). The submicrofibrils cross the microfibril axis at roughly a 45°±10° angle, the same crossover angle observed in microflbril TEM images. These models were constructed so that the maximum diameter of the submicrofibrils was 23Å and the overall microfibril diameters were similar to Pt-C coated image diameters of ∼50Å and not the actual diameter of 36.5Å. The methods for computing optical diffraction patterns have been published before.


Author(s):  
Jaap Brink ◽  
Wah Chiu

The crotoxin complex is a potent neurotoxin composed of a basic subunit (Mr = 12,000) and an acidic subunit (M = 10,000). The basic subunit possesses phospholipase activity whereas the acidic subunit shows no enzymatic activity at all. The complex's toxocity is expressed both pre- and post-synaptically. The crotoxin complex forms thin crystals suitable for electron crystallography. The crystals diffract up to 0.16 nm in the microscope, whereas images show reflections out to 0.39 nm2. Ultimate goal in this study is to obtain a three-dimensional (3D-) structure map of the protein around 0.3 nm resolution. Use of 100 keV electrons in this is limited; the unit cell's height c of 25.6 nm causes problems associated with multiple scattering, radiation damage, limited depth of field and a more pronounced Ewald sphere curvature. In general, they lead to projections of the unit cell, which at the desired resolution, cannot be interpreted following the weak-phase approximation. Circumventing this problem is possible through the use of 400 keV electrons. Although the overall contrast is lowered due to a smaller scattering cross-section, the signal-to-noise ratio of especially higher order reflections will improve due to a smaller contribution of inelastic scattering. We report here our preliminary results demonstrating the feasability of the data collection procedure at 400 kV.Crystals of crotoxin complex were prepared on carbon-covered holey-carbon films, quench frozen in liquid ethane, inserted into a Gatan 626 holder, transferred into a JEOL 4000EX electron microscope equipped with a pair of anticontaminators operating at −184°C and examined under low-dose conditions. Selected area electron diffraction patterns (EDP's) and images of the crystals were recorded at 400 kV and −167°C with dose levels of 5 and 9.5 electrons/Å, respectively.


Author(s):  
L. T. Germinario ◽  
J. Blackwell ◽  
J. Frank

This report describes the use of digital correlation and averaging methods 1,2 for the reconstruction of high dose electron micrographs of the chitin-protein complex from Megarhyssa ovipositor. Electron microscopy of uranyl acetate stained insect cuticle has demonstrated a hexagonal array of unstained chitin monofibrils, 2.4−3.0 nm in diameter, in a stained protein matrix3,4. Optical diffraction Indicated a hexagonal lattice with a = 5.1-8.3 nm3 A particularly well ordered complex is found in the ovipositor of the ichneumon fly Megarhyssa: the small angle x-ray data gives a = 7.25 nm, and the wide angle pattern shows that the protein consists of subunits arranged in a 61 helix, with an axial repeat of 3.06 nm5.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4097
Author(s):  
Hee-Dong Jeong ◽  
Seong-Won Moon ◽  
Seung-Yeol Lee

Diffraction is a fundamental phenomenon that reveals the wave nature of light. When a plane wave is transmitted or reflected from a grating or other periodic structures, diffracted light waves propagate at several angles that are specified by the period of the given structure. When the optical period is shorter than the wavelength, constructive interference of diffracted light rays from the subwavelength-scale grating forms a uniform plane wave. Many studies have shown that through the appropriate design of meta-atom geometry, metasurfaces can be used to control light properties. However, most semitransparent metasurfaces are designed to perform symmetric operation with regard to diffraction, meaning that light diffraction occurs identically for front- and back-side illumination. We propose a simple single-layer plasmonic metasurface that achieves asymmetric diffraction by optimizing the transmission phase from two types of nanoslits with I- and T-shaped structures. As the proposed structure is designed to have a different effective period for each observation side, it is either diffractive or nondiffractive depending on the direction of observation. The designed structure exhibits a diffraction angle of 54°, which can be further tuned by applying different period conditions. We expect the proposed asymmetric diffraction meta-grating to have great potential for the miniaturized optical diffraction control systems in the infrared band and compact optical diffraction filters for integrated optics.


1970 ◽  
Vol 16 (9) ◽  
pp. 883-887 ◽  
Author(s):  
R. G. E. Murray ◽  
Myrtle M. Hall ◽  
J. Marak

Sections of germinating spores of Bacillus polymyxa show that the primordial cell wall consists of a single layer. The intermediate layer and an outer rectangular array of macromolecules found on vegetative cells do not appear until the spore coats crack open about 60 min after initiation of germination. The initial areas of the new components appear in patches under the cracks in the coats. Within 10 min the wall is completed and takes on the profile seen in the vegetative cell. Negative staining and freeze-etching techniques show the regular structure to be identical with that previously shown for mature cells, although the subunits are more readily visible in negatively stained preparations.


Sign in / Sign up

Export Citation Format

Share Document